1 The Basic Representation

We define the imaginary quantity i to be

\[i = \sqrt{-1}. \tag{1.1} \]

Any complex number can be written in the standard form

\[z = a + ib, \tag{1.2} \]

where a and b are real numbers. The real part of z, denoted Re z, is the real number a. The imaginary part of z, denoted Im z, is the real number b. The complex conjugate of z, written z^* (or sometimes \bar{z}), is the complex number...
obtained from z by flipping the sign of the imaginary part:

$$z = a + ib \Rightarrow z^* = a - ib. \quad (1.3)$$

Complex numbers are added, subtracted, multiplied, and divided just like real numbers. So

$$(a + ib) + (c + id) = (a + c) + i(b + d), \quad (1.4)$$

and

$$(a + ib)(c + id) = (ac - bd) + i(ad + bc). \quad (1.5)$$

The ratio of two complex numbers can be put into standard form by multiplying the numerator and denominator by the complex conjugate of the denominator:

$$\frac{a + ib}{c + id} = \frac{a + ib}{c + id} \frac{(c - id)}{(c - id)} = \frac{(ac + bd) + i(ad - bc)}{c^2 + d^2} = \left(\frac{ac + bd}{c^2 + d^2} \right) + i \left(\frac{ad - bc}{c^2 + d^2} \right). \quad (1.6)$$

2 The Modulus

Note that the product of a complex number and its complex conjugate is always a real number:

$$z = a + ib \Rightarrow zz^* = a^2 + b^2. \quad (2.1)$$
The modulus of z, written $|z|$, is defined to be the positive root of zz^*:

$$|z| = (zz^*)^{1/2}. \quad (2.2)$$

A short calculation shows that the modulus is multiplicative, meaning that, for any two complex numbers z_1 and z_2,

$$|z_1 z_2| = |z_1||z_2|. \quad (2.3)$$

Similarly,

$$\frac{|z_1|}{|z_2|} = \frac{|z_1|}{|z_2|}. \quad (2.4)$$

3 A Geometric Interpretation

There is a one-to-one correspondence between complex numbers and points of the plane, given by

$$a + ib \leftrightarrow (a, b), \quad (3.1)$$

and illustrated in Figure 1.
This allows us to specify a complex number by its polar coordinates, usually denoted \((r, \theta)\). From elementary trigonometry it is clear that

\[
a = r \cos \theta \quad r = (a^2 + b^2)^{1/2} = |z| \tag{3.2}
\]

\[
b = r \sin \theta \quad \theta = \tan^{-1} \left(\frac{b}{a} \right). \tag{3.3}
\]

\(r\) (which is just the modulus of \(z\)) is sometimes called the length of \(z\), and \(\theta\) is called the argument (or angle) of \(z\), and is denoted \(\text{Arg } z\).

4 The Complex Exponential Representation

Complex numbers admit another representation in terms of complex exponentials. To motivate this, recall that, near \(x = 0\), a differentiable function can be approximated by its MacLaurin-Taylor expansion

\[
f(x) = f(0) + f'(0)x + f''(0)\frac{x^2}{2!} + f'''(0)\frac{x^3}{3!} + \cdots. \tag{4.1}
\]

Applying this formula enables us to write

\[
e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \tag{4.2}
\]

\[
\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots \tag{4.3}
\]

\[
\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots. \tag{4.4}
\]
Substituting \(x = i\theta \) in the expansion of \(e^x \) and collecting real and imaginary parts gives

\[
e^{i\theta} = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \cdots
\]

\[
= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} + \cdots\right) + i\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \cdots\right),
\]

whereupon we obtain Euler’s formula:

\[
e^{i\theta} = \cos \theta + i\sin \theta. \tag{4.5}
\]

Among other things, Euler’s formula yields the classic equality

\[e^{i\pi} = -1.\]

Using (3.2) and (3.3) we can write any complex number as

\[z = a + ib = r \cos \theta + ir \sin \theta, \tag{4.6}\]

so comparing with (4.5) we see that any complex number can be written in complex exponential form

\[z = re^{i\theta}. \tag{4.7}\]

As a consequence of Euler’s formula we get the very useful equations:

\[
\cos \theta = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta}\right) \tag{4.8}
\]

\[
\sin \theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta}\right). \tag{4.9}
\]

The complex exponential representation is ideally suited to multiplication
and division of complex numbers because of the corresponding properties of the exponential. In particular, for any two complex numbers

\[z_1 = r_1 e^{i\theta_1} \quad \text{and} \quad z_2 = r_2 e^{i\theta_2}, \quad (4.10) \]

we have

\[z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)} \quad \text{and} \quad \frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}. \quad (4.11) \]

Geometrically, the product of \(z_1 \) and \(z_2 \) has length equal to the product of the lengths of \(z_1 \) and \(z_2 \) and argument equal to the sum of the arguments of \(z_1 \) and \(z_2 \).

5 Roots of Unity

According to the Fundamental Theorem of Algebra, an \(n \)th order polynomial has \(n \) complex roots. This means that the equation

\[z^n = 1 \quad (5.1) \]

has \(n \) solutions, which are called \(n \)th roots of unity. To find them, we use Euler’s formula (4.5) to observe that, for any integer \(k \),

\[e^{2\pi ki} = 1. \quad (5.2) \]

Thus (5.1) can be solved by writing

\[z = (1)^{1/n} = (e^{2\pi ki})^{1/n} = e^{2\pi(k/n)i}. \quad (5.3) \]
Figure 2: The three roots of unity

Observe that we get distinct solutions only for the values $k = 0, 1, 2, \ldots, n-1$, after which the solutions repeat. Equivalently, we get distinct solutions only for the integers modulo n. Hence, the n^{th} roots of unity are

$$1, e^{2\pi i/n}, e^{4\pi i/n}, e^{6\pi i/n}, \ldots, e^{2(n-1)\pi i/n}. \quad (5.4)$$

Example 1 The cube roots of unity are

$$1, e^{2\pi i/3}, e^{4\pi i/3}.$$

Equivalently, they are

$$1, -\frac{1}{2} + i\frac{\sqrt{3}}{2}, \text{ and } -\frac{1}{2} - i\frac{\sqrt{3}}{2}. \quad (5.5)$$

(See Figure 2.) Note that they are evenly spaced around the unit circle.

1Recall that, if a and b are integers and n is a natural number, we say a is congruent to b modulo n, written $a \equiv b \mod n$, if $a - b$ is evenly divisible by n.

7
Example 2 The cube roots of $2i$ can be obtained by rewriting $2i$ in complex exponential representation:

$$(2i)^{1/3} = \left(2e^{i\pi/2 + 2\pi ki}\right)^{1/3} = 2^{1/3}e^{i\pi/6 + 2\pi(k/3)i}, \quad k = 0, 1, 2.$$

Equivalently, we may write

$$2^{1/3}e^{i\pi/6}, 2^{1/3}e^{5\pi i/6}, \text{ and } 2^{1/3}e^{9\pi i/6}.$$

These, too, are evenly spaced around a circle (although in this case the circle has radius $2^{1/3}$).

It would appear that the n^{th} roots of any complex number are always spaced evenly around a circle. Equivalently, their sum always seems to be zero. In fact, a more general result holds.

Theorem. Let $\xi_j := e^{2\pi ij/n}, \ j = 0, 1, 2, \ldots, n-1$ be the n^{th} roots of unity. Then

$$\frac{1}{n} \sum_{j=0}^{n-1} \xi_j^k = \delta_{k,0} = \begin{cases} 1, & \text{if } k = 0 \text{ mod } n, \\ 0, & \text{otherwise.} \end{cases}$$

Proof. The case $k = 0$ is evident, so suppose $k \neq 0$. Recall the expression for the sum of the finite geometric series

$$\sum_{j=0}^{N-1} x^j = \frac{1 - x^N}{1 - x},$$

which can easily be proved by multiplying both sides by $(1 - x)$. Then we
have
\[
\sum_{j=0}^{n-1} e^k_j = \sum_{j=0}^{n-1} e^{2\pi i jk/n} = \sum_{j=0}^{n-1} \left(e^{2\pi ik/n} \right)^j = \frac{1 - e^{2\pi ik}}{1 - e^{2\pi ik/n}} = 0,
\]
because when \(k \neq 0 \mod n \) the numerator vanishes but denominator does not. \(\square \)