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Abstract

We define a new family of graphs, called abelian rook graphs. These are Cayley

graphs on the abelian group Zdn with a specific connection set that mimics the

adjacency condition of the simplicial rook graphs. We investigate some of their

basic properties and determine their spectra completely. The spectra turn out to

be integral.
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1 Introduction

Let Cn,d denote the set of weak d-compositions of n. That is,

Cn,d = {(x1, . . . , xd) :
d∑
i=1

xi = n and xi ≥ 0 for 1 ≤ i ≤ d}.

We define a graph S(n, d) on Cn,d by joining two compositions if they differ in precisely

two entries. The graph S(n, d) is called a simplicial rook graph, because the vertices can
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be identified with the lattice points inside the nth dilate of the standard simplex, where

two points are joined by an edge if they lie upon the same lattice line. The terminology

arises because we may view two points joined by an edge as a pair of rooks on a simplicial

chessboard. In particular, the number of non-attacking rooks on such a chessboard is the

independence number of the graph.

Simplicial rook graphs we first defined and studied by Martin and Wagner [12], al-

though the independence number of S(n, 3), namely b(2n + 3)/3c, was obtained earlier

(and independently) by Blackburn, Paterson, and Stinson [1] and Nivasch and Lev [13].

It is not difficult to see ([12], Prop. 2.1) that S(n, d) has
(
n+d−1
d−1

)
vertices and is regular

of degree n(d− 1). Martin and Wagner determined the spectrum of S(n, 3) for all n, and,

on the basis of computational evidence, conjectured that the spectra of all the graphs

S(n, d) are integral. They also conjectured that the least eigenvalue of S(n, d) is equal to

max{−n,−
(
d
2

)
}, and gave conjectured values for some of their multiplicities. 1 All of these

conjectures were subsequently confirmed by Brouwer, Cioabă, Haemers, and Vermette [3],

who also proved several other interesting results about simplicial rook graphs.

Many questions about these graphs remain unanswered, such as the general eigenvalue

spectrum of S(n, d) and the exact independence number of S(n, d). These appear to be

difficult problems, especially because, as was pointed out by Martin and Wagner, these

graphs do not seem to have nice graph theoretical characterizations; in particular, they

are generally neither vertex transitive nor distance regular.

In this work we introduce a related class of graphs inspired by the simplicial rook

graphs, but possessing much more structure. These new graphs, which we call abelian

rook graphs, have much nicer properties than the simplicial rook graphs, and accordingly

afford a much simpler analysis. In particular, the abelian rook graphs are Cayley graphs,

hence vertex transitive, and their entire spectrum can be determined. The spectrum turns

out to be integral as well.

It should be emphasized from the outset that, other than the similarity of their origins,

these two classes of graph are in fact quite different. In particular, their spectra are not

at all similar; they do not even have the same number of vertices. We study them here

1Least eigenvalues are of interest in their own right, but also because they are connected to the

independence number α of a graph via the Hoffman bound, which states that α ≤ |V |/(1− k/τ), where

|V | is the number of vertices, k is the degree, and τ is the least eigenvalue. But the Hoffman bound is not

always exact. For instance, for S(n, 3) with n > 3, the Hoffman bound gives α < 3(n+2)(n+1)/(4n+6),

which is weaker than the actual bound given above.
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for their intrinsic interest, but it is hoped that the reformulation of simplicial rook graphs

given in the next section, which serves as the motivation for abelian rook graphs, may be

of some utility in addressing questions about simplicial rook graphs.

2 Raising and lowering operators

To motivate the introduction of the abelian rook graphs, we first reformulate the definition

of the simplicial rook graphs in terms of raising and lowering operators acting on tensor

product spaces. Let V be an (n + 1)-dimensional real inner product space. We will use

Dirac notation, so that elements of V are denoted by ket vectors |x〉, and elements of the

dual space are denoted by bra vectors 〈x|. The inner product of |x〉 and |y〉 is denoted

〈x| y〉. The canonical orthonormal basis of V consists of the vectors {|0〉 , |1〉 , . . . , |n〉}.

Define two linear operators, L and R, acting on the basis elements by

L |0〉 = 0 and L |x〉 = |x− 1〉 , (1 ≤ x ≤ n)

and

R |n〉 = 0 and R |x〉 = |x+ 1〉 , (0 ≤ a ≤ x− 1).

We call L and R, lowering and raising operators, respectively. It is easy to see that they

are adjoints of one another with respect to the inner product. That is L = R†, where by

definition,
〈
Z†x

∣∣ y〉 = 〈x| Zy〉. Observe that

[L,R] |0〉 = |0〉 and [L,R] |n〉 = − |n〉 and [L,R] |x〉 = 0 1 ≤ x ≤ n− 1, (1)

where [L,R] := LR−RL is the usual commutator. In particular, [L,R] 6= 0.

LetH denote the d-fold tensor product space V ⊗d, having dimension (n+1)d. Elements

of H consist of linear combinations of vectors of the form

|x1, . . . , xd〉 := |x1〉 ⊗ · · · ⊗ |xd〉 .

The space H inherits the natural inner product

〈x1, . . . , xd| y1, . . . , yd〉 = 〈x1| y1〉 · · · 〈xd| yd〉 .

Define the sum operator S : H → H by

S |x1, . . . , xd〉 =

(
d∑
i=1

xi

)
|x1, . . . , xd〉 ,
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extended by linearity. This map is Hermitian, so by the spectral theorem we can write

H =
nd⊕
c=0

Uc, (2)

where Uc is the subspace on which S takes the constant value c. By simple counting, we

have dimUc =
(
c+d−1
c

)
.

For any operator Z on V , we use the shorthand notation

Zi := 1⊗ · · · ⊗ Z︸︷︷︸
i

⊗ · · · ⊗ 1,

to denote the corresponding action on the ith component of the tensor product space H.

Clearly, [Zi, Zj] = 0 if i 6= j. Next, we construct the following operator on H:

H :=
∑

1≤i<j≤d

n∑
k=1

(LkiR
k
j +Rk

iL
k
j ) =

∑
1≤i 6=j≤d

n∑
k=1

LkiR
k
j . (3)

Explicitly, we have

H |x1, . . . , xd〉 =
∑

1≤i 6=j≤d

n∑
k=1

|x1, . . . , xi − k, . . . , xj + k, . . . , xd〉 .

Evidently, [H,S] = 0, so H respects the subspace decomposition (2). A moment’s thought

reveals that Hn := H|Un is precisely the adjacency operator of the simplicial rook graph

S(n, d), where we identify the weak d-compositions of n with the kets |x1, . . . , xd〉 lying

in the subspace Un. 2

3 Abelian rook graphs

The eigenanalysis of Hn is complicated by the fact that [Li, Ri] 6= 0 for any i. For this

reason, we are motivated to change the ground rules and introduce a new class of graphs,

2The adjacency operator Â of a graph on a vertex set X is just the linear operator on the vector space

RX of functions f : X → R, defined by (Âf)(x) =
∑

y∼x f(y), where y ∼ x means y and x are adjacent.

The matrix representation of Â in the basis of characteristic functions on the vertices is the adjacency

matrix A of the graph. We may therefore speak of the spectrum of either the adjacency matrix or the

adjacency operator, as suits us.

4



which we denote by Γ(n, d). (These are not yet the graphs we want.) The idea is to

impose periodic boundary conditions on the kets, so that |x〉 is identified with |x+ n〉. 3

The space V is now n-dimensional, spanned by vectors of the form |0〉 , |1〉 , . . . , |n− 1〉.
The lowering and raising operators are now given by

L |x〉 = |x− 1〉 and R |x〉 = |x+ 1〉 (0 ≤ x ≤ n− 1),

whereupon we see that [L,R] = 0. As before, we define H := V ⊗d, so that H is essentially

a discrete torus. The sum operator S is defined exactly as before, except that now

everything is computed modulo n. Again, we have H =
⊕

c Uc, where Uc is the subspace

of H on which S takes the value c modn.

The vertices of Γ(n, d) are identified with kets of the form |x1, . . . , xd〉, where now

0 ≤ xi ≤ n−1 for 1 ≤ i ≤ d. Two vertices of Γ(n, d) are adjacent if they differ by a vector

of the form |0, . . . , k, . . . ,−k, . . . , 0〉 for 1 ≤ k ≤ n− 1. The abelian rook graph T (n, d) is

the subgraph of Γ(n, d) induced by the vertices in U0. The adjacency operator of Γ(n, d)

on H is

A :=
∑

1≤i<j≤d

n∑
k=1

LkiR
k
j , (4)

so the adjacency operator of T (n, d) is An := A|U0 . Because Li and Ri now commute, the

spectrum of the adjacency operator A simplifies considerably.

4 Abelian rook graphs as Cayley graphs on Zdn

Having motivated their introduction, we may now describe abelian rook graphs in simpler

terms. Specifically, we may view them as Cayley graphs on an abelian group (whence

the nomenclature). Let G be a group, and suppose C ⊆ G is inverse closed (so that

g ∈ C ⇒ g−1 ∈ C) and that 1 6∈ C. The Cayley graph X(G,C) is the graph whose

vertices are the elements of G, with g ∼ h if gh−1 = c for some c ∈ C. 4 The set C is the

connection set of X(G,C). The graph Γ(n, d) may be viewed as a Cayley graph on the

3In the interest of notational brevity, and at the risk of confusing the reader, we want to identify

|x〉 = |x+ n〉 rather than |x+ n+ 1〉. This makes the notation simpler, but means that, if we were to

compare simplicial rook graphs and abelian rook graphs, we might need to shift n by unity, depending

upon what is to be compared.
4The conditions on C ensure that X(G,C) is undirected and without loops.
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abelian group

G := Zn × Zn × · · ·Zn︸ ︷︷ ︸
d times

,

elements of which are of the form (x1, . . . , xd) with xi ∈ Zn, with connection set 5

C :=
⋃

1≤i<j≤d
0≤k≤n−1

(0, . . . , +k︸︷︷︸
i

, . . . , −k︸︷︷︸
j

, . . . , 0).

We take a moment to discuss some properties of Γ(n, d) and T (n, d).

Proposition 1. Γ(n, d) has nd vertices and n connected components, each of which is

isomorphic to T (n, d) (which therefore has nd−1 vertices). The graph T (n, d) has diame-

ter d− 1.

Proof. The graph Γ(n, d) clearly has nd vertices. For any vertex (x1, . . . , xd) ∈ Γ(n, d) we

call
∑

i xi modn its value. Let Γj(n, d) be the induced subgraph of Γ(n, d) on vertices of

value j modn. In particular, Γ0(n, d) = T (n, d). There are no edges between any of these

induced subgraphs, because the adjacency relations preserve value, so there are at least n

connected components. We may choose a vertex of Γj(n, d) by specifying x1, . . . , xd−1,

whereupon xd is uniquely determined. So, each Γj(n, d) has nd−1 vertices.

Consider the map

ϕ : Γ0(n, d)→ Γj(n, d)

given by

(x1, x2, . . . , xd) 7→ (x1, x2, . . . , xd + j),

where addition is performed modulo n. The claim is that this is a graph isomorphism. It

is clearly a bijection. Moreover, for any 1 ≤ i < j ≤ d,

(x1, . . . , xi + k, . . . , xj − k, . . . , xd) 7→ (x1, . . . , xi + k, . . . , xj − k, . . . , xd + j),

so ϕ preserves adjacency. It follows that all the Γj(n, d)’s are isomorphic.

Lastly, fix two vertices (x1, . . . , xd) and (y1, . . . , yd) of the same value (say, 0). We

construct a path connecting them. Suppose that y1 = x1 + k. Then we may step along

an edge from (x1, . . . , xd) to (y1, x2− k, x3, . . . , xd). By repeating this process, we end up

5Note that the resulting Cayley graphs are subgraphs (not induced) of the distance two graphs of the

Hamming scheme H(d, n), which have connection set C =
⋃

1≤i<j≤d

∑
1≤k,`≤n−1(0, . . . , k, . . . , `, . . . , 0).
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after d − 2 steps at a vertex of the form (y1, y2, . . . , x
′
d−1, xd). But as the steps preserve

values, we must have x′d−1 + xd = yd−1 + yd. Thus, there is an ` with yd−1 = x′d−1 + ` and

yd = xd − `, in which case (y1, y2, . . . , x
′
d−1, xd) ∼ (y1, . . . , yd). It follows that Γj(n, d) has

diameter at most d − 1. (In particular, Γj(n, d) is connected, and Γ(n, d) has exactly n

connected components.) But the two vertices (0, . . . , 0) and (1, 1, . . . , 1,−(d−1)) witness

the fact that the diameter is at least d− 1.

Proposition 2. Γ(n, d) and T (n, d) are both regular of degree (n− 1)
(
d
2

)
.

Proof. Fix a vertex (x1, . . . , xd) of Γ(n, d). Then for 1 ≤ i < j ≤ k,

(x1, . . . , xd) ∼ (x1, . . . , xi + k, . . . , xj − k, . . . , xd)

for 1 ≤ k ≤ n− 1. There are
(
d
2

)
choices of (i, j) with i < j, and n− 1 choices of k, giving

a degree of (n − 1)
(
d
2

)
. By Proposition 1, the graph T (n, d) is an induced subgraph of

Γ(n, d), and constitutes its own connected component. Therefore it has the same degree

as Γ(n, d).

Let H be a finite group, and let Sd denote the symmetric group on d letters. The

wreath product H oSd is the group of elements of the form (x1, . . . , xd;σ) where xi ∈ H
(1 ≤ i ≤ d) and σ ∈ Sd, with product given by

(x1, . . . , xd;σ)(y1, . . . , yd; τ) = (x1yσ−1(1), . . . , xdyσ−1(d);στ).

Let Aut Γ denote the full automorphism group of a graph Γ.

Proposition 3. The wreath product group Zn oSd is a subgroup of AutT (n, d).

Proof. The group Zn oSd acts on the vertices of T (n, d) by

(x′1, . . . , x
′
d) := (a1, . . . , ad;σ) ◦ (x1, . . . , xd) = (a1 + xσ−1(1), . . . , ad + xσ−1(d)).

If (y1, . . . , yd) ∼ (x1, . . . , xd) then, for some pair (i, j) with i < j, yi−xi = k, yj−xj = −k,

and xm = ym for m 6= i, j. Suppose σ−1(i) = p and σ−1(j) = q. Then y′p − x′p = k,

y′q − x′q = −k, and y′m = x′m for m 6= p, q, so adjacency is preserved under the action of

the group.

Corollary 1. The graph T (n, d) is vertex transitive.

Proof. Let (x1, . . . , xd) and (y1, . . . , yd) be two vertices of T (n, d). Set ai := yi − xi for

1 ≤ i ≤ d. Then

(y1, . . . , yd) = (a1, . . . , ad; 1) ◦ (x1, . . . , xd).
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5 The spectrum of T (n, d)

The following result is well-known (see, e.g., [8] or [16]).

Lemma 1. Let A be the adjacency operator of a Cayley graph on an abelian group G with

connection set C, and let ψ be a character of G. Then ψ is an eigenfunction of A with

eigenvalue ψ(C) :=
∑

c∈C ψ(c).

Proof. A character of G is a homomorphism from G to C, so

(Aψ)(h) =
∑
g∼h

ψ(g) =
∑
c∈C

ψ(ch) = ψ(C)ψ(h).

The characters of Zn are given by

χr(x) = e2πirx/n (0 ≤ r ≤ n− 1).

Moreover, the characters of a Cartesian product of groups are just the products of the

characters of each constituent. Hence, the characters of G are given by

χr1,...,rd(x1, x2, . . . , xd) =
d∏
`=0

e2πir`x`/n = exp

{
d∑
`=0

2πir`x`/n

}
, (5)

where (r1, . . . , rd) ∈ [0, 1, . . . , n− 1]d.

Let λ ` d be a partition of d. We write λ in two ways: as a nonincreasing sequence

(λ1, . . . , λ`) of length ` with
∑

i λi = d, and in multiplicity notation λ = 1m1 · · · dmd ,

where mi is the number of occurrences of i in the partition. Also, recall the falling

factorial symbol:

(x)m := x(x− 1) · · · (x−m+ 1)

This brings us to the main result.

Theorem 1. The eigenvalues of the simplicial torus rook graph T (n, d) are labeled by

integer partitions λ ` d and are given by

n
∑̀
i=1

(
λi
2

)
−
(
d

2

)
,

each with multiplicity

m(λ) =
d!

λ1!λ2! . . . , λ`!

(n)m1+m2+···+md

m1!m2! · · ·md!n
.
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Proof. By Proposition 1, the eigenvalues of Γ(n, d) are given by

ηr1,...,rd =
∑

1≤i<j≤d

n−1∑
k=1

e2πik(ri−rj)/n.

But
∑n−1

k=1 e
2πikr/n = nδr,0 − 1, where δr,s is the Kronecker delta, so

ηr1,...,rd = n
∑

1≤i<j≤d

δri,rj −
(
d

2

)
. (6)

Evidently, the eigenvalues depend only on the number of pairs of indices (r1, . . . , rd) that

are equal. To compute these numbers, we proceed as follows. First, choose a partition

λ ` d. We want to distribute the parts of this partition of d into n boxes. To each

such distribution (a weak composition of d into n parts) we may associate a number of

sequences (r1, . . . , rd), in a way to be described. Then we must multiply this number by

the number of pairs of indices in these sequences that are equal.

By way of illustration, consider the case n = 5 and d = 3. The three partitions of 3

are (3), (2, 1), and (1, 1, 1). Suppose λ = (2, 1). A few of the distributions of the parts

of this partition into 5 boxes are [2, 1, 0, 0, 0], [2, 0, 1, 0, 0], [0, 1, 2, 0, 0], and so on. In

this case, we will have 5 · 4 = 20 such distributions. Next, we view the distributions as

multiplicities of the numbers appearing in a sequence. Each list of multiplicities gives rise

to a permuted set of sequences. For instance, the distribution [2, 0, 1, 0, 0] can be thought

of as representing all sequences of length 3 containing two 1’s and one 3, namely, (1, 1, 3)

(1, 3, 1) and (3, 1, 1) (these are counted by
(

d
λ1,...,λ`

)
=
(

3
2,1

)
= 3). We obtain all nd = 125

sequences of the form (r1, . . . , rd) in this way, because by the multinomial theorem

nd =
∑

a1+···+an=d,ai≥0

(
d

a1, a2, . . . , an

)
.

Each of the sequences (1, 1, 3) (1, 3, 1) and (3, 1, 1) has one pair of indices that are equal,

so for each of these,
∑

1≤i<j≤d δri,rj = 1. Hence, the eigenvalue associated to λ = (2, 1) is

n · 1−
(
d
2

)
, with multiplicity 20 · 3 = 60.

In general, given a partition λ = (λ1, . . . , λ`) ` d, written also in multiplicity notation

as 1m12m2 · · · dmd , there are(
n

m1

)(
n−m1

m2

)
· · ·
(
n−m1 − · · · −md−1

md

)
=

(n)m1+···+md

m1!m2! · · ·md!
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partition eigenvalue multiplicity

3 = 31 3n− 3 1

21 = 1121 n− 3 3(n− 1)

111 = 13 −3 (n− 1)(n− 2)

Table 1: The spectrum of T (n, 3)

partition eigenvalue multiplicity

4 = 41 6n− 6 1

31 = 1131 3n− 6 4(n− 1)

22 = 22 2n− 6 3(n− 1)

211 = 1221 n− 6 6(n− 1)(n− 2)

1111 = 14 −6 (n− 1)(n− 2)(n− 3)

Table 2: The spectrum of T (n, 4)

ways to place the parts {λ1, . . . , λ`} into n boxes. To each such distribution we construct(
d

λ1,...,λd

)
sequences of the form (r1, . . . , rd) in the manner above. For each such sequence

∑
1≤i<j≤d

δri,rj =
∑̀
i=1

(
λi
2

)
.

Combining this with (6), we see that the eigenvalues of Γ(n, d) are indexed by partitions

λ ` d and are given by

n
∑̀
i=1

(
λi
2

)
−
(
d

2

)
,

each with multiplicity

k(λ) :=
(n)m1+···+md

m1!m2! · · ·md!

(
d

λ1, . . . , λd

)
.

By Proposition 1, Γ(n, d) is comprised of n identical copies of T (n, d), so the eigenvalues

of T (n, d) and Γ(n, d) are the same, but the multiplicities of the eigenvalues of T (n, d) are

just k(λ)/n.

The theorem is illustrated in Tables 1 and 2 for d = 3 and d = 4, respectively,
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Remark 1. Evidently the spectrum of T (n, d) is integral. In fact, integrality is a con-

sequence of a general result of Bridges and Mena [2] (see also [6] and [10]). Bridges

and Mena proved that, if the connection set C is contained in the Boolean algebra gen-

erated by all the subgroups of an abelian group G, then the Cayley graph X(G,C) is

integral. In our case, for fixed i and j, the group elements (0, . . . , k︸︷︷︸
i

, . . . , −k︸︷︷︸
j

, . . . , 0)

for 1 ≤ k ≤ n − 1 are contained in the subgroup of Zdn given by these elements together

with the zero element.

Remark 2. The quantity b(λ) =
∑

i

(
λi
2

)
appearing in Theorem 1 appears often in the

context of symmetric functions and the representation theory of the symmetric group

(e.g., [11], Ch. 1, [15], p. 374, [7], p. 40). For instance, if T is the set of transpositions of

Sd and χλ is the irreducible character of Sd associated to λ, we have

χλ(T )

χλ(1)
=

1

χλ(1)

∑
t∈T

χλ(t) = b(λ)− b(λ′),

where λ′ is the conjugate partition associated to λ. It is perhaps not too surprising that

b(λ) shows up when computing the spectrum of the graphs Γ(n, d) and T (n, d), as both

graphs admit Sd as a group of automorphisms.

Remark 3. As mentioned in the introduction, it was shown in [3] that the least eigen-

value of S(n, d) is equal to max
{
−n,−

(
d
2

)}
. In our case, the least eigenvalue of T (n, d)

is easily seen to be −
(
d
2

)
for all n > 0.

6 The special case d = 3

Closer examination of Table 1 reveals that T (n, 3) has exactly three eigenvalues. We

call 3(n− 1) the ‘trivial’ eigenvalue, because every regular graph possesses an eigenvalue

equal to its degree, which by Proposition 2 is 3(n − 1). We observe that the other two

eigenvalues, namely n−3 and −3 are distinct. Therefore, by a general result ([4] Theorem

9.1.2) or ([9], Lemma 10.2.1), T (n, 3) must be strongly regular. (Recall that a graph Γ

is said to be strongly regular with parameters (v, k, λ, µ) if it is has v vertices, is regular

of degree k, and the number of common neighbors of two vertices x and y is λ or µ,

according as x and y are adjacent or not.) We can see this directly as well.
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Proposition 4. The graphs T (n, 3) are strongly regular with parameters (n2, 3(n−1), n, 6).

Proof. By Proposition 1, T (n, d) has nd−1 vertices. We have already observed that k =

3(n − 1). Now choose two adjacent vertices of T (n, d). By vertex transitivity, we may

choose the first vertex to be u = (0, 0, 0) and the second vertex to be, say, v = (0, 1, n−1) =

(0, 1,−1). Clearly, the n− 2 vertices of type (0, k,−k) with k 6= 0, 1 are adjacent to both

u and v. To this collection we must add (1, 0,−1) and (−1, 1, 0), so that λ = n. On the

other hand, if we fix one vertex to be u, a non-neighbor of u is of the form v = (a, b, c)

with a + b + c = 0 and a, b and c are all nonzero. (Repetitions are allowed.) Neighbors

of v that are also adjacent to u must have 0 as one of its entries. So there are six

possibilities: (0, b + a, c) = (0,−c, c), (0, b, c + a) = (0, b,−b), (a + b, 0, c) = (−c, 0, c),
(a, 0, b + c) = (a, 0,−a), (a + c, b, 0) = (−b, b, 0), and (a, b + c, 0) = (a,−a, 0). These are

all necessarily distinct. For instance, we cannot have (0,−c, c) = (0, b,−b), else b = −c,
implying that a = 0, a contradiction. The same argument works for all other pairs. In

particular, µ = 6.

We can obtain λ and µ in another way. According to ([4], Theorem 9.1.3) we have

rs = µ− k and r + s = λ− µ,

where r and s are the two non-trivial eigenvalues of a strongly regular graph. In our case

we have r = n− 3 and s = −3, so

µ = k + rs = 3(n− 1)− 3(n− 3) = 6 and λ = r + s+ µ = n.

An orthogonal array with parameters d and n is a d by n2 array with entries chosen

from [n] such that, for any two rows of the array, the (ordered) vertical pairs are all

distinct. For instance, here is an orthogonal array with parameters d = 3 and n = 4:

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 2 1 4 3 3 4 1 2 4 3 2 1

.

When d = 3 this notion is equivalent to that of a Latin square. To see why, label the

rows of the above array r, c, and s (for ‘row’, ‘column’, and ‘symbol’). Reading off the

elements of the ith column, we place s(i) at (r(i), c(i)) in a square of size n. The defining

condition of an orthogonal array guarantees that the resulting square is a Latin square.
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When d > 3 an orthogonal array is equivalent to a set of d− 2 mutually orthogonal Latin

squares ([17], Ch. 17).

Given an orthogonal array with parameters n and d, we can form a graph, labeled

OA(n, d), whose vertices are the columns of the array, two such columns being adjacent if

they agree in exactly one coordinate position. For instance, in the above array, the first

two columns would be adjacent in OA(4, 3) because they agree only in the first coordinate.

When d = 3, this is the same thing as a Latin square graph (equivalently, an ordinary

rook graph): given a Latin square array of size n, form a graph on the positions of the

array, where two positions (i, j) and (k, `) are adjacent if i = k or j = ` or (i, j) and (k, `)

contain the same symbol. Note that, by results of Denes and Keedwell [5] and Phelps

[14], different Latin squares of the same size can give rise to non-isomorphic Latin square

graphs.

By Theorem 10.4.2 in [9], the graphs OA(n, d) (written there as OA(d, n)) are strongly

regular, with parameters (n2, d(n − 1), n − 2 + (d − 1)(d − 2), d(d − 1)); for d = 3 the

parameters become (n2, 3(n−1), n, 6). Comparing this to the conclusion of Proposition 4,

we see that T (n, 3) and OA(n, 3) are both strongly regular with the same parameter set.

This suggests that T (n, 3) is isomorphic to some OA(n, 3).

Proposition 5. Let L be the Latin square arising as the negative of the group multipli-

cation table of Zn. Then the Latin square graph arising from L is isomorphic to T (n, 3).

Proof. The entries of L are given by

Lij = −(i+ j) modn.

which is clearly a (circulant) Latin square. The columns of the corresponding orthogonal

array sum to zero, and are therefore also vertices of T (n, 3). Moreover, the condition for

adjacency in the Latin square graph and T (n, 3) are the same.

7 Some questions

In [3], the authors deduce several other properties of the simplicial rook graphs, such as

their automorphism group and local structure. One could try to do something similar

in the case of abelian rook graphs. For instance, by Proposition 3, T (n, d) admits the

13



wreath product group Zn oSd as a group of automorphisms. Is this the full automorphism

group? Do the abelian rook graphs defined here tell us anything useful about simplicial

torus graphs?
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