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Abstract

An algorithm is developed for calculating the number of double cosets P\Sn/P ,

where P is a Sylow-p-subgroup of the symmetric group Sn. Several examples of its

use are given.
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1 Introduction

For the last several years, Persi Diaconis and his colleagues have studied random walks

on the set of double cosets of a finite group (see [9] and references therein). One ime-

diate question is, how many are there? When G is a symmetric group and H and K

are parabolic subgroups, the double cosets H\G/K are in bijective correspondence with

contingency tables, which play a central role in statistics, and which arise in many diverse

areas of mathematics (see, e.g., [7]). There are algorithms for computing the number of

contingency tables with given fixed margins, but no closed formula, and it seems unlikely

that such a formula exists. 1

1For some recent work on parabolic double cosets in the symmetric group and other Coxeter groups,

see [1, 2, 26].
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In a recent paper [8], Diaconis et. al. consider instead the problem of enumerating

the double cosets P\Sn/P of a Sylow-p-subgroup P of the symmetric group Sn. 2 Using

sophisticated group theoretic methods including modular representation theory, they were

able to obtain some very interesting results on the possible sizes of the Sylow double cosets.

In the same paper they asked whether there exists a nice method of counting the number

of such double cosets. We offer such a method here. Although the complexity of the

algorithm increases rapidly with increasing n, it is possible to use our formula to evaluate

the number of Sylow double cosets in some nontrivial cases.

To state the main result we need some notation. Every π ∈ Sn can be written

as a product of disjoint cycles. The cycle type of π (written in multiplicity notation)

is ν = 1c1(π)2c2(π) · · ·ncn(π), where ci(π) is the number of cycles of π of length i. As∑n
i=1 ici(π) = n, ν is a partition of n (written ν ` n). Let si be indeterminates, and write

sc(π) for the monomial s
c1(π)
1 s

c2(π)
2 · · · scn(π)n associated to the partition ν.

Theorem 1. Let P be a Sylow-p-subgroup of Sn, and let

Z̃P (x1, . . . , xn) =
∑
π∈P

sc(π)

be the (augmented) cycle index of P . Write aν for the coefficient of sc(π) in Z̃P (s) asso-

ciated to ν. Then the number of Sylow double cosets of Sn is

Nn := |P\Sn/P | =
1

p2 ordp(n!)

∑
ν`n

a2νzν , (1)

where zν is the order of the centralizer of a permutation having cycle type ν, and ordp(n!)

is the highest power of p dividing n!.

We prove Theorem 1 and provide some examples of its use in Section 3.

2 Preliminaries

In this section we collect some results that will be needed in the proof of Theorem 1.

2Recall that, if p is prime, a p-group is a group having order equal to the power of a prime. A Sylow-

p-subgroup of G is a maximal p-subgroup of G. By the Sylow theorems, a Sylow-p-subgroup exists for

every prime factor of the order of G.
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2.1 Permutation Groups

First, we recall some well-known facts from the theory of permutation groups. 3 Let G

be a group acting transitively on a set X. An orbital of G on X is a diagonal orbit of G

on X ×X. That is, for x, y ∈ X,

orb(x, y) = {(gx, gy) : g ∈ G}.

The number of orbitals is the rank of G, written rkG.

Theorem 2. Let H = Gx be the stabilizer of the point x ∈ X. Then the rank of G equals

the number of double cosets H\G/H.

Proof. See, e.g., [13], 4.8, or [14], Prop. 1.6.2.

Although the following proposition can be derived using character theory (see, e.g.,

[14], Propositions 6.2.10 and 6.2.11) it is a simple matter to provide a direct proof. As

the result in this form is difficult to find in the textbooks, we supply a proof here.

Theorem 3. Let H be a subgroup of G, and let C denote the set of conjugacy classes of

G. Then

|H\G/H| = |G|
|H|2

∑
C∈C

|C ∩H|2

|C|
.

Proof. By the lemma that is not Burnside’s [24], the number of orbitals of G on G/H is

the average number of pairs (aH, bH) fixed by the diagonal action of G. Therefore, we

may write

rkG =
1

|G|
∑
g∈G

fix(g)2.

where

fix(g) := |{aH : gaH = aH}| = |{aH : a−1ga ∈ H}|.

As the condition gaH = aH is manifestly independent of the coset representative a, so

too is the condition a−1ga ∈ H. Each coset has |H| representatives, so we can write

fix(g) =
1

|H|
|{a ∈ G : a−1ga ∈ H}|.

3See, e.g., [4], [28], [38].
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Thus, we must count the number of conjugates of g that lie in H. If C is the conjugacy

class of g, this number is not simply |C ∩ H|, because many different conjugates of g

coincide. Indeed, the stabilizer of the conjugacy action of G on g is the centralizer CG(g)

of g in G, so

|{a ∈ G : a−1ga ∈ H}| = |CG(g)||C ∩H| = |G||C ∩H|
|C|

.

Hence

rkG =
|G|
|H|2

∑
g∈G

(
|C ∩H|
|C|

)2

=
|G|
|H|2

∑
C∈C

|C ∩H|2

|C|
.

2.2 Wreath products

It is an old result of Kaluz̆nin (see Section 2.5 below) that the Sylow-p-subgroups of

the symmetric group are Cartesian products of wreath product groups. There are many

different wreath products in the literature, so it is important to specify what type of

wreath product we will be using here. 4 As wreath products are best understood in

terms of trees, we spend a little more time than is strictly necessary for our ultimate aim

discussing the relationship between trees and wreath products.

Let A be a permutation group acting on an n-set X, and let B be a permutation

group acting on an m-set Y . From these data we construct a permutation group A[B] on

X × Y , called the wreath of A around B, or the wreath product B o A of B with A. To

every a ∈ A and every function σ : X → B we associate a permutation (a;σ) of X × Y
by

(a;σ)(x, y) = (ax, σ(x)y). (2)

At this point it is not even obvious that this defines a group. To see this, observe that,

by (2),

(a;σ)(b; τ)(x, y) = (a;σ)(bx, τ(x)y) = (abx, σb(x)τ(x)y).

4We will use the so-called permutational or imprimitive wreath product. See Rotman [33] pp. 172ff.

See also Dixon and Mortimer ([11], Section 2.6). The permutational wreath product was used to great

effect by Pólya [29] (although wreath products appeared earlier in the literature). Pólya referred to it as

the Kranz. In Read’s translation of Pólya’s paper [30] it is called the corona. Huppert [17], Sec. 15) calls

it the Kranzprodukte. One of the clearer expositions can be found in the work of de Bruijn [6]. Some

other discussions of wreath products include ([14], Sec. 1.5), ([15], p. 164), [16], ([28], Sec. 2), and ([32],

pp. 41ff).
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where

σb(x) := σ(bx). (3)

So, in order to construct a group out of the maps (a;σ), we are led to define

(στ)(x) := σ(x)τ(x), (4)

so that

(a;σ)(b; τ) = (ab;σbτ). (5)

That is, we must first turn BX (the set of all maps from X to B) itself into a group

using componentwise multiplication. Effectively, we are defining BX to be the Cartesian

product of n copies of B. The group A[B] has |A||B|n elements. 5

To show that A[B] is indeed a group, we need an identity element, inverse elements,

and associativity for the product (5). The identity element is clearly (1; 1) := (1A; 1BX ),

where 1BX (x) = 1B. Also, if we define σ−1 by σ−1(x) := (σ(x))−1, then

(a;σ)−1 = (a−1;σ−1a−1).

Lastly,

(a;σ)[(b; τ)(c; υ)] = (a;σ)(bc; τcυ) = (abc;σbcτcυ)

while

[(a;σ)(b; τ)](c; υ) = (ab;σbτ)(c; υ) = (abc; (σbτ)cυ) = (abc;σbcτcυ),

so the product (5) is associative.

5In many sources the wreath product B oA is defined as follows. Start with a group B and a subgroup

A ≤ Sn. Define an action of A on Bn = B × · · · ×B (n times) by

b := (b1, . . . , bn) 7→ ba := (ba−1(1), . . . , ba−1(n)) a ∈ A.

Then the wreath product group B oA is the set Bn ×A equipped with the binary operation

(b1; a1)(b2; a2) := (b1b
a1
2 ; a1a2).

where the product in the first entry is defined componentwise. This group is isomorphic to A[B]. In

B o A we identify Bn ∼= {(b; 1)}, and A ∼= {(1; a)}. Then Bn is normal in B o A, which means we can

think of B o A as the semidirect product of Bn by A (with the above action). The order of the group is

|B|n|A|. The problem with this definition is that it is a bit too general for our purposes, as B need not

be a permutation group.

5



x1 x2 xn

(x1, y1) (x1, y2) (x1, ym)

Yx1

(x2, y1) (x2, y2) (x2, ym)

Yx2

(xn, y1) (xn, y2) (xn, ym)

Yxn

X

root

Figure 1: A rooted tree

2.3 Wreath products as automorphism groups of trees

Although the definition of the wreath product given above is clean, it is not very intuitive.

The best way to understand the wreath product is as a set of automorphisms of a certain

kind of tree. 6 Consider the rooted tree T illustrated in Figure 1. The root has n children,

which we identify with the elements of an n-set X. Each node x ∈ X has m children,

labeled Yx, where each Yx is a copy of an m-set Y . In particular, the leaves of the tree

can be labeled by the pairs (x, y), where x ∈ X and y ∈ Y , and so identified with the

Cartesian product X × Y . Let A be a permutation group acting on X, and let B be a

permutation group acting on Y .

Theorem 4. (See, e.g., [33], pp. 174-175) Let G be the subgroup of the automorphism

group of T that fixes the root, permutes the vertices of X according to an element a ∈ A,

and sends the vertices of Yx to the vertices of Yax according to some element of B. Then,

viewed as a permutation group on the leaves of T , G is precisely the wreath product A[B].

Proof. For every g ∈ G and (x, y) ∈ X × Y we have

g(x, y) = (ax, σ(x)y).

This is precisely the action of the wreath product A[B] on X × Y .

6See, e.g., [25] or ([33], pp. 174-175). For undefined graph theoretic nomenclature, see [15].
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Figure 2: A simple rooted tree.

For instance, the wreath product G := Z3 o Z3 may be viewed as a subgroup of the

automorphism group of the tree in Figure 2. The group G cyclically permutes the nodes

at depth 1 and, independently, cyclically permutes the nodes at depth 2. If we were to

label the leaves by the integers 1 to 9 in order, then the group Z3 oZ3 would be generated

by the permutations

(123), (456), (789), (147)(258)(369).

In this way, Z3 o Z3 is naturally a subgroup of S9.

Next we show that the wreath product is associative. 7

Theorem 5. Let A, B, and C be permutation groups acting on sets X, Y , and Z,

respectively. Let S := X × Y ×Z. Then A[B[C]] ∼= (A[B])[C] (equivalently, (C oB) oA ∼=
C o (B o A))) as permutation groups of S. That is, the wreath product is associative.

Proof. It is easiest to see this by examining the rooted tree T , shown schematically in

Figure 3. Using the construction of Theorem 4, one simply observes that the automor-

phism subgroups A[B[C]] and (A[B])[C] act in precisely the same way on the leaves of T .

(One imagines constructing T in two ways: first, by forming the tree associated to X×Y ,

then attaching copies of the Z’s, and second, by forming the tree with X, then attaching

copies of the Y × Z tree.) More explicitly, we first identify triples of X × Y × Z:

(x, (y, z))↔ (x, y, z)↔ ((x, y), z). (6)

7As previously mentioned, there are different, inequivalent, notions of a ‘wreath product’ in the liter-

ature. For example, in addition to the permutational wreath product that we have defined here, Rotman

([33], pp. 172ff) also defines the so-called regular wreath product. The regular wreath product is not

associative.
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X

Y

Z Z Z

Y

Z Z Z

Y

Z Z Z

Figure 3: Schematic of the rooted tree illustrating Theorem 5.

Elements of A[B[C]] are of the form (a; τ), where a ∈ A, and τ ∈ B[C]X . Their action on

points of S is given by

(a; τ)(x, y, z) = (a; τ)(x, (y, z))

= (ax, τ(x)(y, z))

= (ax, (β(x)y, γ(x, y)z))

= (ax, β(x)y, γ(x, y)z),

where β(x) ∈ BX and γ(x, y) ∈ CX×Y . Elements of (A[B])[C] are of the form ((a; β); γ),

where a ∈ A, β ∈ BX , and γ ∈ CX×Y . Their action on points of S is given by

((a; β); γ)(x, y, z) = ((a; β); γ)((x, y), z)

= ((a; β)(x, y), γ(x, y)z)

= ((ax, β(x)y), γ(x, y)z)

= (ax, β(x)y, γ(x, y)z).

Remark. Modulo the identification (6), the two groups (C oB) oA and C o(B oA) are not

merely isomorphic, but are essentially the same permutation group acting on X ×Y ×Z.

2.4 The cycle index

In his monumental paper on the enumeration of various chemical compounds, Pólya [29]

(see also [30]) introduced and employed the notion of the cycle index of a permutation
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group. It has become an essential tool for the enumeration of combinatorial objects with

symmetries, and it has been generalized in many directions. 8 We recall a few facts here.

Let G be a permutation group acting on a set X with |X| = n. We may view G as

a subgroup of Sn, so that every element of G has a cycle decomposition. Let ci(g) be

the number of cycles of length i of g, and let si be indeterminates. Write sc(g) for the

monomial s
c1(g)
1 s

c2(g)
2 · · · scn(g)n . Then the cycle index of G is

ZG(x1, . . . , xn) =
1

|G|
∑
g∈G

sc(g).

It is important to note that the cycle index depends on the specific representation of G

as a permutation group, as isomorphic groups can give rise to different cycle indices. 9

Pólya showed that one can obtain the cycle index of various composite groups from

the cycle indices of their constituents. Suppose that A and B be permutation groups on

disjoint sets X and Y , respectively.

Theorem 6. (Pólya [29]) The cycle index of the Cartesian product A × B acting as a

permutation group of X × Y is given by

ZA×B(s) = ZA(s)ZB(s).

Proof. Every g ∈ A×B is of the form (a, b) for a ∈ A and b ∈ B. The group elements a and

b act independently on their respective sets, so sc((a,b)) = sc(a)sc(b). As |A× B| = |A||B|,
the result follows.

Theorem 7. (Pólya [29]) The cycle index of the wreath product A[B] acting as a permu-

tation group of X × Y is given by

ZA[B](s1, s2, s3, . . . ) = ZA(t1, t2, t3, . . . ), where tk := ZB(sk, s2k, s3k, . . . ).

Proof. The proof requires a careful consideration of the cycle structure of the permutations

(a;σ). For the details, see e.g., ([3], Prop. 15.5.2) or ([6], Theorem 5.5).

8The cycle index and its uses were anticipated by Redfield [31], so the associated theory is often called

Pólya-Redfield theory. It is discussed in most combinatorics and many group theory texts. See, e.g.,

Cameron [3], de Bruijn [6], Grove [14], Harary [15], Harary and Palmer [16], Merris [22], Palmer and

Robinson [27], Stanley [35, 36], and van Lint and Wilson [37].
9The standard example is H1 := {1, (12), (34), (12)(34)}, with cycle index Z1 = (1/4!)(s41 +2s21s2 +s22)

and H2 := {1, (12)(34), (13)(24), (14)(23)}, with cycle index Z2 = (1/4!)(s41 + 3s22). The groups are

isomorphic, but the cycle indices are different.
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This theorem was used by Pólya to enumerate various chemical compounds, and was used

by Harary, Palmer, Robinson and others to enumerate different classes of graphs. It is

related to the concept of plethysm in symmetric function theory (e.g., [35]). We will use

it to obtain the cycle indices of iterated wreath products.

2.5 Sylow-p-subgroups of the symmetric group

Let p be a prime. The Sylow-p-subgroups of the symmetric groups Sp are all isomorphic

to Zp, for the only power of p dividing p! is p itself, and the only groups of prime order

are the cyclic ones. Clearly, these are simply the subgroups generated by a p-cycle. But

already the Sylow-p-subgroups of Sp2 are a little tricky, and those of Sn more so. The

general answer was supplied by Kaluz̆nin [19]. 10

Let Zp be the cyclic subgroup of order p. Define the iterated wreath product 11

Wm,p := Zp o Zp o · · · o Zp︸ ︷︷ ︸
m times

,

where Wm+1,p := Wm,p o Zp and W0,p := 1. We understand this to be the permutational

wreath product defined in Section 2.2, so by Theorem 5, we can drop any parentheses. If

X = {1, 2, . . . , p} then Wm,p acts on Xm, so it may be viewed as a subgroup of Spm . By

a simple inductive argument, we see that Wm,p has order pµ(m), where

µ(m) = pm−1 + pm−2 + · · ·+ 1 =
pm − 1

p− 1
.

As with general wreath products, the iterated wreath product Wm,p is best understood

as the group of automorphisms of a rooted tree. An r-tree is just a tree consisting of one

root with r children. The complete r-ary tree of depth m is the rooted tree constructed

inductively by attaching r-trees to the leaves of the complete r-ary tree of depth m − 1,

where the complete r-ary tree of depth zero is just a single node. For instance, the tree

10Kaluz̆nin is also transliterated as Kaluzhnin and Kaloujnine. Actually, the existence of the Sylow

subgroups of the symmetric group (that is, subgroups having the requisite order) was observed about

a century earlier by Cauchy [5] (who obviously did not call them Sylow subgroups). See also Miller

[23] and Findlay [12]. Modern treatments can be found in Grove ([14], Section 2.3), Kaluz̆nin et. al.

[20], Robinson ([32], Theorem 1.6.19), or Rotman ([33], pp. 176-177). For some recent work on Sylow

subgroups of the symmetric group, see Im and Oğuz [18] and references therein.
11For more about iterated wreath products of cyclic groups, see Orellana et. al. [25].
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in Figure 2 is a complete 3-ary tree of depth 2. The iterated wreath product Wm,p can

therefore be viewed as the subgroup of a complete p-ary tree of depth m generated by

cyclic permutations of the nodes of the subtrees at each level. Because the nodes are

only allowed to be permuted cyclically, a better structure to represent Wm,p might be

something more akin to a mobile, in which one hangs p-gons from each node. In any case,

with the scene now set, we can state Kaluz̆nin’s theorem.

Theorem 8. (Kaluz̆nin, [19]) Let p be a prime.

• A Sylow-p-subgroup of Spm is isomorphic to an iterated wreath product Wm,p.

• Let

n = a0 + a1p+ · · ·+ arp
r

be the p-adic expansion of n. Then a Sylow-p-subgroup of Sn is isomorphic to the

direct product

P := W a0
0,p ×W a1

1,p ×W a2
2,p × · · · ×W ar

r,p. (7)

Proof. By the Sylow theorems, it suffices to show that P is a subgroup of Sn having

the correct order. Recall that the p-adic valuation ordp(n!) is the highest power of p

dividing n!. By an old result of Legendre [21],

ordp(n!) =
∑
k

⌊
n

pk

⌋
.

where bxc is the least integer greater than or equal to x. Note that⌊
n

pk

⌋
= ak + ak+1p+ · · ·+ arp

r−k,

because 1 ≤ ai < p for all i. Hence,

ordp(n!) = a1 + a2(1 + p) + a3(1 + p+ p2) + · · ·+ ar(1 + p+ · · ·+ pr−1)

=
r∑

k=1

ak

(
pk − 1

p− 1

)
=

r∑
k=1

akµ(k).

By (7), P has order p
∑r

k=1 akµ(k) = pordp(n!), which is the correct order for a Sylow-p-

subgroup of Sn. Moreover, as previously noted, Wm,p may be viewed as a subgroup of

Spm , so P is naturally a subgroup of Sn.
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3 Enumerating Sylow double cosets

With these preliminaries out of the way, the proof of Theorem 1 is now straightforward.

Proof of Theorem 1. Let P be a Sylow-p-subgroup of Sn. By Theorem 3,

|P\Sn/P | =
n!

p2 ordp(n!)

∑
ν`n

|Cν ∩ P |2

|Cν |
,

where Cν is the conjugacy class of Sn containing all permutations of cycle type ν. Let zν

be the order of the centralizer of any permutation having cycle type ν. Then |Cν | = n!/zν ,

and so

|P\Sn/P | =
1

p2 ordp(n!)

∑
ν`n

zν |Cν ∩ P |2.

But |Cν ∩P | just counts the number of elements of P having cycle type ν in Sn, so from

the definition of the augmented cycle index,

aν := |Cν ∩ P | = [si11 s
i2
2 · · · sinn ]Z̃P (s). (8)

Theorem 1 now follows.

We next turn to some examples to illustrate Theorem 1. The idea is to use Theorem 7

and Kaluz̆nin’s Theorem 8 to evaluate the cycle index of P , then substitute into (1) using

the well-known result (e.g., [34], Prop. 1.3.2) that, for any partition ν = 1i12i2 · · ·nin of n,

zν := 1i1i1!2
i2i2! · · ·ninin!. (9)

3.1 Sp

The Sylow-p-subgroups of Sp are all isomorphic to Zp. These are just the groups generated

by a p-cycle. Thus, the cycle index of Zp is

ZZp(s) =
1

p
(sp1 + (p− 1)sp), (10)

corresponding to the identity permutation with p cycles of length 1 and p − 1 cycles of

length p. By (8),

a1p = 1 and ap = p− 1.
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Equation (1) yields

Np = |P\Sp/P | =
1

p2
(a21pp! + a2pp) =

1

p2
(p! + p(p− 1)2) =

1

p
((p− 1)! + (p− 1)2). (11)

It is not immediately obvious that the right hand side of (11) is integral, but of course it

must be. And, indeed, integrality follows from Wilson’s theorem ((p − 1)! = −1 mod p).

(As pointed out by Diaconis et. al. [8], this provides a somewhat convoluted proof of

Wilson’s theorem.) We could now use (11) to calculate the number of double cosets of a

given size in Sp, as in [8], but we do not do so here.

3.2 Sp2

Let P := Zp o Zp be a Sylow-p-subgroup of Sp2 . According to Theorem 7,

ZP =
1

p
((ZZp(s1, s2, . . . )

p + (p− 1)ZZp(sp, s2p, . . . ))

=
1

p

((
1

p
(sp1 + (p− 1)sp)

)p
+ (p− 1)

(
1

p
(spp + (p− 1)sp2

))
=

1

pp+1

(
p∑

k=0

(
p

k

)
spk1 ((p− 1)sp)

p−k

)
+

(p− 1)

p2
(spp + (p− 1)sp2).

As |P | = pp+1 we may read off the coefficients of Z̃P = pp+1ZP :

a1pkpp−k =

(
p

k

)
(p− 1)p−k (1 ≤ k ≤ p)

app = (p− 1)p + pp−1(p− 1)

ap2 = pp−1(p− 1)2.

Therefore, by (9) and (1),

Np2 = |P\Sp2/P | =
1

p2p+2

( p∑
k=1

(
p

k

)2

(p− 1)2p−2k(pk)!pp−k(p− k)!

+ ((p− 1)p + pp−1(p− 1))2ppp! + p2p(p− 1)4
)
. (12)

The value of Np2 grows extremely rapidly with p. For instance, for p = 2, 3, 5, 7, 11 we

get 2, 88, 6.4 × 1016, 1.8 × 1049, and 8.2 × 10175, respectively. With additional work one

could derive an asymptotic expression for Np2 . As a quick check that these orders are
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reasonable, observe that the number of (ordinary) cosets of P in Sp2 is (p2)!/pp+1. For

p = 2, 3, 5, 7, 11 this gives 3, 4480, 9.9× 1020, 1.1× 1056, and 2.6× 10188, respectively.

Remark. The parenthetical expression on the right hand side of (12) must be divisible

by p2p+2, but this is certainly not obvious.

3.3 Spm

The enumeration of Sylow double cosets of Spm follows along the same lines as above,

but the computations rapidly become involved. Define, recursively,

A(r)(pk) :=
1

p
([A(r−1)(pk)]p + (p− 1)A(r−1)(pk+1)) with A(0)(k) := sk. (13)

Then, following the procedure above, we have

ZWr,p = A(r)(1) (r ≥ 1). (14)

This yields, for instance,

ZW1,p = A(1)(1) =
1

p

(
[A(0)(1)]p + (p− 1)A(0)(p)

)
=

1

p
(sp1 + (p− 1)sp)

ZW2,p = A(2)(1) =
1

p

(
[A(1)(1)]p + (p− 1)A(1)(p)

)
=

1

p

([
1

p
(sp1 + (p− 1)sp)

]p
+ (p− 1)

(
1

p
[spp + (p− 1)sp2 ]

])
=

1

pp+1
(sp1 + (p− 1)sp)

p +
p− 1

p2
(spp + (p− 1)sp2)

ZW3,p = A(3)(1) =
1

p

(
[A(2)(1)]p + (p− 1)A(2)(p)

)
=

1

p

([
1

pp+1
(sp1 + (p− 1)sp)

p +
p− 1

p2
(spp + (p− 1)sp2)

]p
+
p− 1

pp+1
(spp + (p− 1)sp2)

p +
p− 1

p2
(spp2 + (p− 1)sp3)

)
.
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3.4 Sn

We now turn to the general case. By Theorem 8, a Sylow-p-subgroup P ≤ Sn is a direct

product of copies of iterated wreath products. Suppose

n = a0 + a1p+ a2p
2 + · · ·+ arp

r

is the p-adic expansion of n. Then by Theorems 6 and 8, the cycle index of Wn,p is given

by

ZP = Za0
W0,p

Za1
W1,p
· · ·Zar

Wr,p
= [A(0)(1)]a0 [A(1)(1)]a1 [A(2)(1)]a2 · · · [A(r)(1)]ar . (15)

From this, we may compute Nn in the manner above. Clearly, this procedure becomes

prohibitively complex as n increases. But, using the results above, we can compute Nn

in some simple cases.

For instance, let p = 5, and suppose that n = 38. As 38 = 3 + 2 · 5 + 52, we have

P = W 3
0,5 ×W 2

1,5 ×W2,5,

so

ZP = [A(0)(1)]3[A(1)(1)]2[A(2)(1)]

= s31

[
1

5

(
s51 + 4s5

)]2 [ 1

56
(s51 + 4s5)

5 +
4

52
(s55 + 4s25)

]
=

1

58

(
7∑

k=0

(
7

k

)
s5k+3
1 (4s5)

7−k

)
+

4

54
s31(s

10
1 s

5
5 + 8s51s

6
5 + 16s75 + 4s101 s25 + 32s51s5s25 + 64s25s25).

As |P | = pa1+a2(1+p) = 58 we have

Z̃P = s1
38 + 28 s1

33s5 + 336 s1
28s5

2 + 2240 s1
23s5

3 + 8960 s1
18s5

4

+ 24004 s1
13s5

5 + 10000 s1
13s25 + 48672 s1

8s5
6 + 80000 s1

8s5s25

+ 56384 s1
3s5

7 + 160000 s1
3s5

2s25.

Reading off the coefficients aν and plugging into (1) and computing yields

N38 = 3427904112510880160415104913113088.
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4 Questions

Evidently, calculating the exact number of Sylow-p-subgroups starting from (1) is essen-

tially impossible for very large n. Hence, a natural question is whether (1) can be used

to calculate an asymptotic formula of some kind. Diaconis et. al. [8] have demonstrated

that ‘most’ double cosets of Sylow-p-subgroups of Sn have the maximum size possible. So

another natural question is whether these double cosets can be enumerated by a simple

formula, perhaps using some of the results above.
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