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1 Introduction

A finite collection L of lines through the origin in Rd is said to be equiangu-

lar provided the (lesser) angle between any two lines in L is constant. The

simplest nontrivial example of an equiangular line set in R2 consists of the

diagonals of a regular hexagon, while in R3 we have the four diagonals of the

cube and the six diagonals of the icosahedron. In addition to their obvious

aesthetic appeal, equiangular line sets have deep connections to combina-

torics, design theory, coding theory, communication theory, and many other

areas of mathematics and physics, and their study is a very active area of

research. See [5] (also [6], Chapter 11) for a nice introduction and overview.

For some recent results, see, e.g., [1, 2, 3, 8, 14].

The main problem in this area is to determine N(d), the maximum num-

ber of equiangular lines in dimension d, and if possible, construct them.

Although many specific instances of N(d) are known, a complete character-

ization seems entirely out of reach. In general we have the following two

uniform bounds. The first is known as the absolute bound.

Theorem 1 (Gerzon [9]). For d ≥ 2 we have

N(d) ≤
(
d+ 1

2

)
.

If equality holds then d = 2, d = 3, or d+ 2 is the square of an odd integer.

The second is called the relative bound and requires a bit more discussion.

Let Φ ⊂ Rd be a set of n distinct vectors whose linear spans are the lines L.

The line set L is equiangular provided there exists a constant α < 1 such that

|(v, w)/
√

(v, v)(w,w)| = α for all v, w ∈ Φ with v 6= w. Here (·, ·) denotes

the usual inner product on Rd. The constant α is the angle of L. By a result

of Neumann [9], if n > 2d then 1/α must be an odd integer. The relative

bound is as follows.

2



d 2 3 4 5 6 7-13

N(d) 3 6 6 10 16 28

α−1 2
√

5
√

5,3 3 3 3

Table 1: The maximum number of equiangular lines in Rd and their angles

Theorem 2 (Lemmens & Seidel [9]). If L is a set of n equiangular lines in

Rd with angle α then

n ≤ d− dα2

1− dα2
.

For small values of d we have the results in Table 1 ([5]). As of this writing,

the first unknown value is N(14), where the correct answer is either 28 or

29. Examination of Table 1 shows that the absolute bound is achieved only

in dimensions 2, 3, and 7, consistent with Theorem 1. 1 Also, the relative

bound is met in dimensions 2, 3, 5, 6, and 7.

Constructing equiangular line sets is difficult and, apart from some al-

ready well-known configurations, mostly a matter of cleverness and luck. In

this paper we discuss an elementary construction of some equiangular line

sets in dimensions d ≤ 8. This will yield a well-known line set realizing the

absolute bound, and will rule out a large class of line sets in all dimensions.

2 Totally symmetric equiangular line sets

Equiangular lines are highly symmetric structures, so it makes sense to look

for sets admitting some kind of symmetry group. 2 The simplest such group is

1There is only one more dimension known in which the absolute bound is achieved,

namely d = 23. The corresponding equiangular line set is related to the famous Witt

design and the celebrated binary Golay code. For more on this, see, e.g., [6, 7, 12].
2Most of the well-known equiangular line sets meeting the relative or absolute bound

have large symmetry groups. But in general it is difficult to construct such a set given
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common b’s inner product

0 4ab+ (d− 4)a2

1 2ab+ b2 + (d− 3)a2

2 2b2 + (d− 2)a2

Table 2: Possible inner products for permutations of (b, b, a, . . . , a)

Sd, the permutation group on d elements. So, we fix a vector v = (v1, . . . , vn)

and consider its orbit under the defining representation of the group, namely

Φ = {(vσ(1), . . . , vσ(n)) : σ ∈ Sd}.

We call such a set (or its corresponding line set) totally symmetric. When is

such a set equiangular, if ever?

In what follows we consider various types of generating vectors v. For

example, the case v = (a, . . . , a) is obviously trivial, as there is only one vector

in the orbit. The next simplest type is (b, a, . . . , a) in which all the entries

of v are equal save one. But this case is uninteresting, because the inner

product between any two such vectors is obviously constant. In particular,

we have found d equiangular lines in Rd. The standard basis consisting of all

vectors of the form (0, . . . , 1 . . . , 0) is a simple example in which α = π/2.

Things become much more interesting next. Assume v = (b, b, a, . . . , a).

Now we have three cases for the inner product (v, w) depending on whether

the b’s overlap in zero, one, or two places. The possible inner products are

classified in Table 2.

If the two b entries coincide in v and w then v = w, so we may exclude

the last case. Therefore we have only two possibilities in order that the inner

products agree up to sign:

4ab+ (d− 4)a2 = 2ab+ b2 + (d− 3)a2 (1)

only the group. For a discussion from the point of view of finite frames, see, for example,

[?].
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or

4ab+ (d− 4)a2 = −(2ab+ b2 + (d− 3)a2). (2)

Equation (1) gives

2ab = b2 + a2 ⇒ (a− b)2 = 0⇒ a = b,

which puts us back into the trivial case. Equation (2) gives

6ab+ b2 + (2d− 7)a2 = 0. (3)

If a = 0 then b = 0, which is trivial. If b = 0 then either a = 0 (again,

trivial), or else d = 7/2, an impossibility. So without loss of generality we

may scale the vectors so that b = 1. This yields

(2d− 7)a2 + 6a+ 1 = 0.

We get a real solution provided the discriminant is nonnegative, which gives

36− 8d+ 28 ≥ 0⇒ d ≤ 8.

Apparently there are no other totally symmetric line sets of type (b, b, a, . . . , a)

in dimensions greater than 8. Already we have learned something interesting!

Now suppose d = 8. Then we have

9a2 + 6a+ 1⇒ a =
1

9
(−6±

√
36− 36) = −1

3
.

How many such vectors are there? We can place the b’s in
(
d
2

)
=
(
8
2

)
=

28 different ways, so n = 28. We have therefore found 28 equiangular

lines in R8. Up to a scale factor, these vectors are all permutations of

(3, 3,−1,−1,−1,−1,−1,−1). Evidently the entries sum to zero, so in fact

these lines actually live in a seven dimensional subspace. In particular, we

have found 28 equiangular lines in R7, and this number meets the abso-

lute bound. Classically this configuration of lines can be obtained as the
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d 2 3 4 5 6 7 8

a 1± 2√
3

3±
√

10 −3± 2
√

2 −1±
√

6

3
−1

5
,−1

−3±
√

2

7
−1

3

|Φ| 1 3 6 10 15 21 28

α−1 − 3 3 3 3 3 3

Table 3: Allowed parameters for a subclass of totally symmetric equiangular

line sets by dimension

diagonals of a three dimensional polytope in R7 called Gosset’s semiregular

polytope 321 (in Coxeter’s notation—see [4]). This, in turn, is related to the

Lie group E7 and other mathematical structures.

What happens in lower dimensions? Plugging numbers into (3) and solv-

ing gives the allowed values of a (again assuming b = 1), the inverse angles

of the corresponding equiangular line sets, and their set sizes (namely
(
d
2

)
).

The results are given in Table 3. Comparison with Table 1 reveals that the

totally symmetric line sets of type (b, b, a, . . . , a) are maximal in dimensions

4, 5, and 8. We have thus obtained some very interesting equiangular line

configurations with minimal effort.

3 More totally symmetric line sets?

Now we consider the next simplest case, namely the one in which b appears

with multiplicity three, so that Φ consists of all permutations of (b, b, b, a, . . . , a).

By considering the possible inner products as before we obtain the results in

Table 4.

But now we discover an interesting phenomenon. As before we may set

b = 1 without loss of generality. For brevity let (j) denote the jth entry in
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common b’s inner product

0 6ab+ (d− 6)a2

1 b2 + 4ab+ (d− 5)a2

2 2b2 + 2ab+ (d− 4)a2

3 3b2 + (d− 3)a2

Table 4: Possible inner products for permutations of (b, b, b, a, . . . , a)

the table. If we equate (0) and (1) we get

6a+ (d− 6)a2 = 1 + 4a+ (d− 5)a2,

which yields the trivial case a = 1. So we are forced to conclude that (0)

and (1) are opposite in sign. If (0) and (2) are the same sign we get another

triviality (check!), but if they are opposite in sign, then (1) and (2) must be

the same sign, and again we get a triviality. A similar argument works for

any multiplicity of b greater than three. Therefore we conclude that there

are no more totally symmetric equiangular line sets with vectors containing

only two distinct entries!

4 A rearrangement inequality

In fact, more is true.

Theorem 3. Let Φ be a totally symmetric equiangular line set generated

by a vector v = (v1, . . . , vn). Then v must be one of the following types: (i)

v = (a, . . . , a), (ii) v = (b, a, . . . , a), or (iii) v = (b, b, a, . . . , a). In particular,

apart from the uninteresting cases (i) and (ii), every such line set is one of

the types given in Table 3.

Proof. By virtue of the preceding discussion we may assume v has at least

three distinct entries. Without loss of generality we may assume v to be of
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the form (a, b, c, u), where a < b < c and u is any vector of size d − 3. The

possible inner products between distinct vectors are all of the form (v, σv) :=∑d
k=1 vivσ(i), where σ 6= e, the identity permutation.

Consider the permutations σ1 = (1, 3, 2, π), σ2 = (3, 1, 2, π) and σ3 =

(3, 2, 1, π), where π is any permutation of {4, . . . , d} (or empty if d = 3).

We claim that we must have (v, σiv) 6= (v, σjv) for any i, j ∈ {1, 2, 3} with

i 6= j, which proves the theorem, as we cannot have (v, σiv) = −(v, σjv) for

all i, j ∈ {1, 2, 3} either.

To prove the claim, we follow the approach used in ([10], Chapter 5) to

prove the celebrated rearrangement inequality. 3 First recall that an inversion

of a permutation σ ∈ Sd is a pair (j, k) such that σ(j) > σ(k), and let `(σ)

denote the number of such pairs. Suppose σ has an inversion (j, k), and

define τ ∈ Sd by (i) τ(i) = σ(i) if i 6∈ {j, k}, (ii) τ(j) = σ(k), and (iii)

τ(k) = σ(j). Then `(τ) < `(σ), and a bit of algebra shows that

(v, τv)− (v, σv) = (vk − vj)(vτ(k) − vτ(j)).

Observing that `(σ3) > `(σ2) > `(σ1) gives

(v, σ1v) > (v, σ2v) > (v, σ3v).

5 Beyond the symmetric group

Evidently totally symmetric equiangular line sets are rare. So it makes sense

to consider equiangular line sets arising from the orbits of some vector under

3The rearrangement inequality states that, if −∞ < a1 ≤ a2 ≤ · · · ≤ ad < ∞ and

−∞ < b1 ≤ b2 ≤ · · · ≤ bd < ∞ are any two sequences, then for any permutation σ ∈ Sd

we have
d∑
k=1

akbd−k+1 ≤
d∑
k=1

akbσ(k) ≤
d∑
k=1

akbk.
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other representations of Sd or else other groups G having d dimensional

representations. But our previous considerations place stringent restrictions

on the allowed groups and representations. In particular, considerations such

as those given above rule out many classes of permutation representations.

Equiangular line sets are related to many beautiful and important math-

ematical structures. This vast territory has been studied extensively because

of its connections to classical areas of mathematics such as sphere packings,

coding theory, and finite simple groups [12]. But much still remains to be

explored, and more surprises surely await discovery.
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