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Abstract

We derive a simple geometric characterization of the Kronecker coefficients

〈χjχk, χ`〉, where χk is the character of the irreducible Sn module V (n−k,1k).
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1 Introduction

Let χλ be the irreducible character of the symmetric group Sn indexed by the partition

λ ` n. 1 The Kronecker coefficients gµνλ are defined by

χµχν =
∑
λ

gµνλχ
λ.

Equivalently, gµνλ = 〈χµχν , χλ〉, where 〈χ, ψ〉 is the usual inner product on characters 2

〈χ, ψ〉 =
1

n!

∑
π∈Sn

χ(π)ψ(π).

1To avoid trivialities, we assume n ≥ 2.
2In this expression we have used the well-known fact that the characters of the symmetric group are

real.
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From this expression, two striking facts emerge. First, the Kronecker coefficients are

symmetric in {µ, ν, λ}. Second, because the product of two characters is again a charac-

ter 3, the Kronecker coefficients are nonnegative. Murnaghan [16, 17, 18] studied these

coefficients and challenged his readers to find a combinatorial interpretation for them, a

challenge that remains unanswered, except in various special cases. 4

There is another expression for the Kronecker coefficients, developed first by Little-

wood [12] using the theory of symmetric functions. 5 Employing the characteristic map

of Frobenius, Littlewood showed that

sµ ∗ sν =
∑
λ

gµ,ν,λsλ,

where sλ denotes the Schur function indexed by λ, and ‘∗’ denotes the internal product.

The comultiplication formula for Kronecker coefficients is

sλ[XY ] =
∑
µ,ν

gµνλsµ[X]sν [Y ],

where X = x1 + · · ·+xn and Y = y1 + · · ·+ yn denote two alphabets (written additively),

XY = x1y1 + x1y2 + · · ·+ x1yn + x2y1 + · · ·+ xnyn, and sλ[X] = sλ(x1, . . . , xn).

These last two algebraic definitions employ the notion of plethysm (a term coined by

Littlewood), which is notoriously difficult to handle. Indeed, it seems fair to say that

the difficulty of computing Kronecker coefficients rests with the apparent intractability of

plethystic computations. Nevertheless, when the partitions involved are relatively simple

it is possible to extract some information. For instance, Rosas [25] used the comultiplica-

tion formula to compute the coefficients gµνλ when µ and ν are either hooks or two-rowed

partitions. 6 These results were extended by Blasiak [4] and Liu [13] when only one of

the partitions is a hook shape and the others are arbitrary. Recently, Ashraf [2], using

combinatorial methods together with the generating function for hook characters 7, was

able to obtain a simple generating function for the reduced Kronecker coefficients 8 for

3It is in fact the tensor product character.
4The literature on Kronecker coefficients is vast. See, e.g., [19] and references therein.
5For all undefined terms, see [14] or [26].
6Some of these coefficients had been computed earlier by other means by Lascoux [11], Remmel [23],

and Remmel and Whitehead [24].
7Ashraf attributes this result to Goupil [9], but the generating function for hook characters goes back

to Aitken [1]. See Stanley [26], Ex. 7.72. See also below.
8For the definition, see, e.g., [17].
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hook shapes, thereby reproducing a result of Rosas. 9 In fact, his proof yields a generating

function for the coefficients gµνλ when all three partitions are hooks.

The purpose of this paper is to compute the Kronecker coefficients corresponding to

three hook shapes using only elementary algebraic means (together with a few basics

concerning the representation theory of the symmetric group and some rudimentary sym-

metric function theory), and to present the results in a novel geometric form. Although

some of our analysis resembles that of Ashraf, we avoid subtle combinatorics, and we ex-

press our final result in terms of symmetric functions rather than in terms of a generating

function. This yields a nice geometric characterization of the Kronecker coefficients in

three hook case in terms of integer points in triangles.

2 A generating function for hook characters

We first recall a basic fact about characters of exterior product representations. Let

U be an m-dimensional representation of a finite group G. If the eigenvalues of g in

the representation U are {η1, . . . , ηm}, then the eigenvalues of g in ∧kU are of the form

{ηi1ηi2 · · · ηik}, where 1 ≤ i1 < i2 < · · · < ik ≤ m. Their sum is thus ek(λ1, . . . , λm),

where ek is the kth elementary symmetric function. Hence,

pUg (x) := det
∣∣
U

(1− xg) =
∏
i

(1− λix) =
n∑
k=0

(−1)k(Tr∧kU g)xk =
n∑
k=0

(−1)kχUk (g)xk, (1)

where χUk (g) is the character of the representation ∧kU evaluated at g.

Let D be an n-dimensional vector space with standard basis {ei}. Then D affords

the defining representation of Sn, given by πei = eπ−1(i) for π ∈ Sn. Let V λ denote the

irreducible module of Sn indexed by the partition λ. As is well-known, we have

D = V (n) ⊕ V (n−1,1).

Inspired by the theory of Coxeter groups, V (n−1,1) is often called the reflection represen-

tation. 10 It was Aitken [1] who first showed that the exterior powers of V (n−1,1) coincide

9See also [6].
10It is so-named because Sn is the Coxeter group of type An−1: the basis elements of V (n−1,1) may

be chosen to be the n − 1 vectors {ei − ei+1}1≤i≤n−1, corresponding to the reflection symmetries of a

simplex.
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with the irreducible representations associated to partitions of hook shape. Specifically,

he proved that

∧kV (n−1,1) ∼= V (n−k,1k) (0 ≤ k ≤ n− 1). (2)

His proof used generating functions together with the Frobenius formula for the irreducible

characters of Sn. 11 We may exploit this isomorphism to obtain a simple generating

function for the hook characters.

In the defining representation D of Sn, the permutation π is represented by a per-

mutation matrix P (π). Every permutation admits a disjoint cycle decomposition. Thus,

every permutation matrix can be written as a direct sum of cyclic permutation matrices.

Every cyclic permutation matrix for a cycle w of size k has characteristic polynomial

det(1 − xw) = 1 − xk. So, for a permutation π with cycle type µ = 1µ12µ2 · · · tµ` (where

µj is the number of j cycles) the characteristic polynomial of π in the representation D is

pDπ (x) = (1− x)µ1(1− x2)µ2 · · · (1− x`)µ` .

Abbreviating pV
(n−1,1)

π (x) simply by pπ(x), it follows that 12

pπ(x) = (1− x)µ1−1(1− x2)µ2 · · · (1− x`)µ` . (3)

Combining (1), (2), and (3), we conclude that

χk(π) = [(−x)k]pπ(x).

where χk is the character of V (n−k,1k).

3 Kronecker coefficients of hooks

Next, we turn to a computation of the Kronecker coefficients

gjk` := 〈χjχk, χ`〉.
11For other proofs of this relation, see [26], Ex. 7.72, [7], Proposition 5.4.12, and [8], Proposition 5.1.

We remark that, as a consequence of Aitken’s proof, one discovers the non-obvious fact that the repre-

sentations ∧kV (n−1,1) are irreducible. Actually, this fact is a special case of a more general result holding

for all Coxeter groups (of which the symmetric group is an instance), namely that the exterior powers

of the reflection representation of any Coxeter group are irreducible. This more general result was first

observed by Steinberg. See [5], Ch. 5 Ex. §2.3, [10], Theorem 24-3A, and [7], Theorem 5.1.4.
12This is a consequence of pDπ (x) = p

(n)
π (x)p

(n−1,1)
π (x), which follows from the direct sum decomposition

of D, and p(n)(x) = 1− x, which follows from the fact that V (n) is the trivial representation.
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Using (2) we can write

gjk` = [(−1)j+k+`xjykz`]
1

n!

∑
π∈Sn

pπ(x)pπ(y)pπ(z).

To evaluate this, we appeal to the cycle index. Recall that the cycle index of the symmetric

group Sn is

Zn(u) =
1

n!

∑
π∈Sn

u
µ1(π)
1 u

µ2(π)
2 · · ·uµn(π)n ,

where µj(π) is the number of cycles of length j in the disjoint cycle decomposition of π.

Thus,

gjk` = [(−1)j+k+`xjykz`] u−11 Zn(u)
∣∣
ui=(1−xi)(1−yi)(1−zi) .

Recall also ([26], p.xxx) that the generating function for Zn is

∑
n

Zn(u)tn = exp

{∑
i≥1

uit
i

i

}
.

Hence, using the expansion

log(1− x) = −
∑
i≥1

xi

i

and suppressing the dependence of gjk` on n, we obtain 13∑
n

gjk`t
n

= [(−1)j+k+`xjykz`]
(1− xt)(1− yt)(1− zt)(1− xyzt)

(1− t)(1− x)(1− y)(1− z)(1− xyt)(1− xzt)(1− yzt)
. (4)

We now proceed to expand the right hand side of (4). Evidently, it is symmetric in

x, y, and z, so it admits an expansion in terms of symmetric functions in those variables.

We shall find such an expansion in terms of Schur functions.

Using partial fractions we can write

1

(1− xyt)(1− xzt)(1− yzt)
=
∑
a

wat
a,

13Compare [2], proof of theorem 3.7.

5



where

wa : = A(xy)a +B(yz)a + C(xz)a,

and where we have defined

A =
xy(x− y)

∆
, B =

yz(y − z)

∆
, C =

xz(z − x)

∆
,

and

∆ := (x− y)(y − z)(x− z).

Also,

(1− xt)(1− yt)(1− zt)(1− xyzt) =
∑
b

(−1)beb(E) tb,

where E = (x, y, z, xyz). Thus, the right hand side of (4) becomes

RHS =
1

(1− x)(1− y)(1− z)

(∑
c

tc

)(∑
b

(−1)beb(B)tb

)(∑
a

wat
a

)

=
1

(1− x)(1− y)(1− z)

(∑
i

fit
i

)(∑
a

wat
a

)
=

1

(1− x)(1− y)(1− z)

∑
n

Fnt
n,

where

fi :=
i∑

d=0

(−1)ded(E) and Fn =
n∑
i=0

fiwn−i.

As f4 = f5 = f6 = f7 = · · · , we have

Fn = f0wn + f1wn−1 + f2wn−2 + f3wn−3 + f4wn−4 + f4wn−5 + f4wn−6 + · · ·

= A(f0(xy)3 + f1(xy)2 + f2(xy) + f3)(xy)n−3 + Af4

n−4∑
i=0

(xy)i + cyclic.

In this expression, any term with a negative power of xy (or yz or zx) is interpreted as

zero. Moreover, the word ‘cyclic’ means that one is to add the two terms with (A,B,C)

and (x, y, z) cyclically permuted. A little algebra 14 reveals that

(f0(xy)3 + f1(xy)2 + f2(xy) + f3
(1− x)(1− y)(1− z)

= x2y2 + xy + 1− xyz

14...and a little help from MAPLE.
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and
f4

(1− x)(1− y)(1− z)
= 1− xyz.

Therefore, setting

F ′n :=
Fn

(1− x)(1− y)(1− z)
,

we find

F ′n = A(x2y2 + xy + 1− xyz)(xy)n−3 + A(1− xyz)
n−4∑
i=0

(xy)i + cyclic

= A
n−1∑
i=0

(xy)i − Axyz
n−3∑
i=0

(xy)i + cyclic

=
1

∆
(x− y)

{
n∑
i=1

(xy)i − xyz
n−2∑
i=1

(xy)i

}
+ cyclic.

Using Jacobi’s alternant definition of the Schur functions gives

1

∆

{
(x− y)(xy)i + (y − z)(yz)i + (z − x)(xz)i

}
=

(
1

xyz

)(
xi+2yi+1z ± perms

∆

)
=

1

xyz
s(i,i,1)(x, y, z)

= s(i−1,i−1,0)(x, y, z).

Hence,

F ′n =
n∑
i=1

s(i−1,i−1,0) −
n−2∑
i=1

s(i,i,1).

We can make this look a little nicer by observing that each term in s(i−1,i−1,0) has even

total degree, and each term in s(i,i,1) has odd total degree, so we may drop all the minus

signs and shift indices to obtain the main result.

Proposition 1. For 0 ≤ k ≤ n − 1, let χk denote the character of the representation

χ(n−k,1k), and set gjk` = 〈χjχk, χ`〉. Then

gjk` = [xjykz`]

(
n−1∑
i=0

s(i,i,0) +
n−2∑
i=1

s(i,i,1)

)
. (5)
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From this result we see immediately that gj,k,` = 0 if j + k + ` > 2n− 2. But we may

extract more detailed information from (5) by expanding the Schur functions in terms of

monomials. Recall that, if λ is a partition of m and α is a weak composition of m, a

semi-standard Young tableau (SSYT) of shape λ and type α = (α1, . . . , αm) is a tableau

of shape λ which contains αj j’s, for 1 ≤ j ≤ m, such that the rows are weakly increasing

across and the columns are strictly increasing down. The combinatorial definition of Schur

functions is

sλ =
∑
α

Kλαx
α, (6)

summed over all weak compositions α |= m, where xα := xα1
1 · · ·xαm

m and the Kostka

number Kλα is the number of SSTY of shape λ and type α. As Schur functions are

symmetric, Kλα cannot depend on the order of the elements of α ([26], Proposition xxx),

so one can also write

sλ =
∑
µ

Kλµmµ, (7)

where now the sum goes over all partitions µ ` m, and mµ is the monomial symmetric

function.

It is not difficult to find the Kostka numbers appearing in (5). Consider first the Kostka

numbers of the form K(i,i,0),(j,k,`). By virtue of the column constraint for semistandard

Young tableaux, the only possible columns of a two-rowed tableau filled with the entries

1, 2, and 3 are of the form

P := 1
2
, Q := 1

3
, and R := 2

3
.

Call these tableaux ‘blocks’. By virtue of the row constraint, any particular tableau cor-

responds to a word of the form P pQqRr, where lower case letters represent the multiplic-

ities of each letter. Any particular choice of word yields a unique tableau. In particular,

K(i,i,0),(j,k,`) ∈ {0, 1}. There is no restriction on the number of blocks of each kind beyond

the fact that the total number must fit in the given diagram, so the number of tableaux

of shape (i, i, 0) is the number of solutions to p + q + r = i in nonnegative integers. In

particular, the number of solutions is just
(
i+2
2

)
. Moreover, we havejk

`

 =

1 1 0

1 0 1

0 1 1


pq
r

⇒
pq
r

 =
1

2

 1 1 −1

1 −1 1

−1 1 1


jk
`

 .
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Hence, the conditions p ≥ 0, q ≥ 0, and r ≥ 0 are equivalent to the constraints

` ≤ j + k, k ≤ j + `, and j ≤ k + `. (8)

An almost identical situation holds for the Kostka numbers of the form K(i,i,1),(j,k,`),

because the first column of any tableau of shape (i, i, 1) must contain the numbers 1,

2, and 3. If we remove this column, we are left with a two-rowed tableau of shape

(i− 1, i− 1, 0). Again, we find that K(i,i,1),(j,k,`) ∈ {0, 1}. Moreover, the number of SSYT

of shape (i, i, 1) and type (j, k, `) is
(
i+1
2

)
. Constructing the tableaux with blocks as before,

we find thatj − 1

k − 1

`− 1

 =

1 1 0

1 0 1

0 1 1


pq
r

⇒
pq
r

 =
1

2

 1 1 −1

1 −1 1

−1 1 1


j − 1

k − 1

`− 1

 .

Now the conditions p ≥ 0, q ≥ 0, and r ≥ 0 are equivalent to the constraints

` ≤ j + k − 1, k ≤ j + `− 1, and j ≤ k + `− 1. (9)

Combining (8) and (9) yields the following. 15

Proposition 2. Let ((P )) = 1 if the proposition P is true, and zero otherwise. If j+k+`

is even, then

gijk = ((j ≤ k + `))((k ≤ j + `))((` ≤ j + k)).

If j + k + ` is odd, then

gijk = ((j ≤ k + `− 1))((k ≤ j + `− 1))((` ≤ j + k − 1)).

We can also characterize the nonzero Kronecker coefficients geometrically. Let N
denote the natural numbers (including zero). To any multivariate polynomial f =∑

α∈Nm cαx
α we associate a convex polytope in Rm, namely its Newton polytope N(f),

which is the convex hull in Rm of all the exponent vectors α ∈ Nm corresponding to the

nonzero coefficients cα. The Newton polytope is saturated if cα 6= 0 whenever α ∈ N(f). 16

The study of saturated Newton polytopes in algebraic combinatorics has attracted much

attention recently (see, e.g., [15]).

15Compare with [25], Theorem 3(4).
16If N(f) is saturated, every lattice point in N(f) occurs as an exponent vector of f . Most polynomials

fail this condition.
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As shown in ([15], Proposition 2.5), Schur polynomials have saturated Newton poly-

topes. The proof is a consequence of the properties of Kronecker coefficients and a funda-

mental theorem of Rado on inequalities. Let λ = (λ1, . . . , λm) be an integer vector. The

convex hull of the Sm orbit of λ, written Pλ, is called a generalized permutahedron. 17 As

is well known, the set of partitions of a fixed positive integer m is partially ordered by

dominance, where µ = (µ1, . . . , µr) ` m is dominated by λ = (λ1, . . . , λs) ` m, written

µ ≺ λ, provided
h∑
i=1

µi ≤
h∑
i=1

λi for all h ≥ 1.

The following two results are fundamental.

Lemma 1 ([26], Proposition 7.10.5 and Ex. 7.12).

Kλµ 6= 0⇔ µ ≺ λ.

Lemma 2 ([22], Theorem 1).

Pµ ⊆ Pλ ⇔ µ ≺ λ.

Using these lemmata, together with elementary properties of Newton polytopes shows

that

N(sλ(x1, . . . , xm)) = Pλ

is saturated. We therefore have the following result.

Proposition 3. For 0 ≤ j, k, ` ≤ n− 1 we have

gjk` =


1, if (j, k, `) ∈ P(i,i,0) for some 0 ≤ i ≤ n− 1,

1, if (j, k, `) ∈ P(i,i,1) for some 1 ≤ i ≤ n− 2, and

0, otherwise.

Proof. By virtue of the preceding remarks, we need only show that the nonzero values

of the Kronecker coefficients must equal unity. (Observe that the three cases above are

disjoint, as the Schur functions s(i,i,0) and s(i′,i′,1) appearing in (5) are homogeneous of

different degrees.) But this follows immediately from the discussion preceding Proposi-

tion 2.

17The ordinary permutahedron is P(1,2,...,n). For more about generalized permutahedra, see, e.g., [3],

[20] and [21].
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Corollary 1. Set b := (j+k+`) mod 2 and define Tb(i) to be the triangle in R3 whose ver-

tices are (i, i, b), (i, b, i), and (b, i, i). Then the nonzero (and hence unit) Kronecker coeffi-

cients gjk` are in one-one correspondence with the integer points in (and on)
⋃
i∈I(b) Tb(i),

where I(0) = {0, . . . , n− 1} and I(1) = {1, . . . , n− 2}.
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