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Abstract

We offer a simple proof of a determinant evaluation of Thibon.

1 Introduction

The evaluation of combinatorially defined determinants has been a favorite pastime of

generations of mathematicians. Such evaluations are prized both for their intrinsic beauty

as well as their utility, especially when they admit simple factorizations. We are interested

here in one such determinant evaluation involving a certain permutation statistic.

Let Sn denote the set of all permutations of {1, 2, . . . , n}. We view permutations

as bijections σ : {1, 2, . . . , n} → {1, 2, . . . , n} and write them in one-line notation as

σ = [σ(1), σ(2), . . . , σ(n)] or [σ1, σ2, . . . , σn]. We multiply permutations right to left, so

that (στ)(i) = σ(τ(i)). The index i is a descent of σ if σ(i) > σ(i + 1). (Similarly, i is

an ascent of σ if σ(i) < σ(i+ 1).) The descent set of a permutation σ is, not surprisingly,

the set of descents of σ:

Des(σ) := {j : 1 ≤ j < n and σ(j) > σ(j + 1)}
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The major index of a permutation is the sum of its descents:

maj σ :=
∑

j∈Des(σ)

j.

Among the many striking determinant evaluations contained in the beautiful survey article

of Christian Krattenthaler [8] is the following one:

det
σ,τ∈Sn

(
qmaj(στ−1)

)
=

n∏
k=2

(1− qk)n!(k−1)/k. (1)

In ([8], Appendix C), Krattenthaler gives a proof of (1), due to Jean-Yves Thibon, using

noncommutative symmetric functions. 1 The purpose of this work is to offer a simpler

proof of (1) that avoids the machinery of noncommutative symmetric functions. Our

approach, which uses only computations in the symmetric group algebra, is inspired by a

remark of Manfred Schocker at the end of [9].

2 A symmetric group algebra identity

Define

κn(q) :=
∑
σ∈Sn

qmaj(σ)σ ∈ CSn,

where CSn is the (complex) group algebra of Sn. 2 Let ρ be the (left) regular represen-

tation of Sn (extended linearly to CSn). Then

ρ(κn(q))ρ(τ) = ρ(κn(q)τ) =
∑
π∈Sn

qmaj(π)ρ(πτ) =
∑
σ∈Sn

qmaj(στ−1)ρ(σ).

It follows that

ρ(κn(q))στ = qmaj(στ−1),

so that, to evaluate the left hand side of (1) we must evaluate det ρ(κn(q)).

Let

γj := (j j − 1 · · · 1)

1As shown in [4], the algebra of noncommutative functions is canonically isomorphic to Solomon’s

descent algebra [10].
2The notation κn is used in the literature to honor Alexander Klyachko, who first observed [6] that,

if ζ is a primitive nth root of unity, then (1/n)κn(ζ) is an idempotent of CSn. For a nice presentation of

the constellation of ideas surrounding the Klyachko idempotent, see [3].
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denote the reversed j-cycle. By convention, γ1 = 1, where 1 is the identity element of Sn.

In ([9], Section 3), Schocker states without proof the following theorem, which appears

(also without proof) in a footnote of a paper by Dieter Blessenohl and Hartmut Laue ([2],

Eq. 9). 3

Theorem 1.∑
σ∈Sn

qmaj(σ)σ = (1 + qγn + q2γ2n + · · ·+ qn−1γn−1n ) · · · (1 + qγ3 + q2γ23)(1 + qγ2)

As it is difficult to find a proof of Theorem 1 in the literature, and as the result is

central to our discussion, we supply a proof in Section 3 below. 4 Before doing so, however,

let us show how it easily implies Equation (1). The trick is to define (cf., [9], Section 3)

ωn(q) := (1− qγ2)(1− qγ3) · · · (1− qγn),

and then observe that

κn(q)ωn(q) = (1− q2)(1− q3) · · · (1− qn) · 1.

Hence,

ρ(κn(q)) = ρ(ωn(q))−1
n∏
k=2

(1− qk).

Taking determinants of both sides gives

det ρ(κn(q)) = det ρ(ωn(q))−1
n∏
k=2

(1− qk)n! =
n∏
k=2

(1− qk)n!

det ρ(1− qγk)

(because the regular representation has dimension n!).

It remains to find det ρ(1 − qγk), the characteristic polynomial of the cycle γk in the

regular representation. 5 The regular representation is just the permutation representation

of Sn acting on itself by left multiplication. Fix an element σ ∈ Sn. Its orbit under the

3We have reversed the order of multiplication to align the formula with our conventions.
4The result is implicit in [7]. See also [12].
5Several authors, including Phil Hanlon, Richard Stanley, and John Stembridge, have investigated the

characteristic polynomials of the cycles γk in the irreducible representations of Sn, in connection with

a determinant evaluation of Alexander Varchenko (see below). For a discussion and further references,

see [5].
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left action by γk has size k (namely, {σ, γkσ, γ2kσ, . . . , γk−1k σ}). Hence, Sn breaks up into

n!/k disjoint orbits under the action of γk. The characteristic polynomial of γk on a single

orbit is just 1− qk. Thus,

det ρ(1− qγk) = (1− qk)n!/k.

We therefore conclude that

det ρ(κn(q)) =
n∏
k=2

(1− qk)n!

(1− qk)n!/k
=

n∏
k=2

(1− qk)n!(k−1)/k,

as desired.

3 A proof of Theorem 1

We will prove Theorem 1 in the following equivalent form. 6 Recall that a sequence

(i1, i2, i3, . . . , in) is subexcedant if 0 ≤ ij ≤ j − 1. Denote by Sn the set of all subexcedant

sequences of length n, and observe that |Sn| = |Sn|.

Theorem 2. The following hold.

1. Every σ ∈ Sn can be written uniquely as

σ = γinn · · · γ
i3
3 γ

i2
2 γ

i1
1 , (2)

where (i1, i2, i3, . . . , in) ∈ Sn.

2. If σ is written in the above form,

majσ = i1 + i2 + · · ·+ in. (3)

Proof. 1. Let σ ∈ Sn be given. We show that there exists a subexcedent sequence

(j1, j2, . . . , jn) ∈ Sn such that

γj11 γ
j2
2 γ

j3
3 · · · γjnn σ = 1. (4)

We then obtain the result by setting ik := (k − jk) mod k.

6This form of the theorem appears (again without proof) in [1].
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According to our conventions, left multiplication of σ by γk shifts the first k values

of σ cyclically down by 1:

γk[σ1, σ2, . . . , σn] = [(σ1− 1) mod k, (σ2− 1) mod k, . . . , (σk − 1) mod k, σk+1, . . . , σn]. (5)

Set σ′ = γjnn σ, where jn = σn modn. Then σ′n = n, and the remaining entries of σ′ are

less than n. Next, set σ′′ = γ
jn−1

n−1 σ
′, where jn−1 = σ′n−1 mod (n − 1). Then σ′′n−1 = n − 1

(and σ′′n = n still, because γn−1 does not affect the nth entry of σ′). Continuing in this

way, we eventually reach the identity permutation. Moreover, 0 ≤ jk ≤ k − 1 for all k.

2. Set σ = γ`nγ
in−1

n−1 · · · γi22 γi11 ∈ Sn. We proceed by induction on n and `. The result is

trivially true for n = 1 (and ` = 0), so assume it holds for n− 1 and ` < n− 1. Then it

is enough to show that

maj(γnσ) = maj(σ) + 1. (∗)

Set σ′ := γnσ. There are three cases.

i) σ1 = 1. Then the first position of σ is always an ascent. Then σ′1 = n, so the first

position becomes a descent. Any other descents present in σ remain at the same

positions in σ′, because σk > 1 for k > 1, and thus, subtracting 1 from each entry

lowers each entry by the same amount, whence (∗) holds.

ii) σi = 1 for 2 ≤ i ≤ n−1. Then i−1 is a descent of σ and i is an ascent of σ, so i−1

is an ascent of σ′ and i is a descent of σ′. As before, all the other descents remain

unchanged. Again, (∗) obtains.

iii) σn = 1. This case is impossible, because ` < n− 1.

4 Remarks

If we apply the trivial representation to both sides of the expression appearing in Theo-

rem 1, we obtain∑
σ∈Sn

qmaj(σ) = (1 + q + q2 + · · ·+ qn−1) · · · (1 + q + q2)(1 + q).
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Thus, the generating function on the right hand side counts the number of permutations

by major index. As MacMahon first showed (see [11]), the same generating function also

counts permutations by inversion number. (An inversion of a permutation σ is a pair (i, j)

with i < j and σ(i) > σ(j). The inversion number inv(σ) is the number of inversions

of σ.) That is, the inversion number and the major index are equidistributed. Because of

this close connection between the two statistics, one might expect that there would be an

analogue of (1) for the inversion number. Such an analogue was discovered independently

by Alexander Varchenko [13] and Don Zagier [14]. 7

det
σ,τ∈Sn

(
qinv(στ

−1)
)

=
n∏
k=2

(1− qk(k−1))(
n
k)(k−2)!(n−k+1)!. (6)

Zagier’s proof of (6) (unlike that of Varchenko, which is more general but more compli-

cated) uses a clever recursive approach in the symmetric group algebra. Is there a simpler

approach to (6) similar to the one given above?
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