The Spectrum of the Derangement Graph

Paul Renteln

CSUSB and CIT

May 3, 2007
The Spectrum of the Derangement Graph

Outline

Preliminaries
 Properties of the Derangement Graph
 The Conjecture

The Spectrum of a Normal Cayley Graph

The Standard Character of S_n

Symmetric Function Theory

The Eigenvalues of the Derangement Graph
 Complete Factorial Symmetric Functions
 A Recurrence Relation for the Eigenvalues

Proof of the Conjecture

Future Directions
Cayley Graphs

- G a finite group
- $S \subseteq G$ a symmetric subset of generators:

$$\{ s \in G : s \in S \implies s^{-1} \in S \}$$

- $\Gamma(G, S)$ a Cayley graph:

$$V(\Gamma) = G$$
$$E(\Gamma) = \{ u \sim v \iff vu^{-1} \in S \}$$

- $\Gamma(G, S)$ is normal if S is closed under conjugation.
The Derangement Graph

- $G = S_n$ the symmetric group on $X = \{1, 2, \ldots, n\}$
- $S = D_n$ the set of derangements (fixed point free permutations) on X:
 $$\{\sigma \in S_n : \sigma(x) \neq x, \forall x \in X\}$$
- $\Gamma_n := \Gamma(S_n, D_n)$ the derangement graph
Properties of the Derangement Graph

- Γ_n is connected for $n > 3$. S_n generated by adjacent transpositions, and $(k, k + 1)$ can be written as $(1, 2, \ldots, n)^2 \cdot (n, n - 1, \ldots, 1)^2(k, k + 1)$

- Γ_n is Hamiltonian. (Eggleton and Wallace, 1985)

- $\alpha(\Gamma_n) = (n - 1)!$. (Deza and Frankl, 1977). Bound achieved by coset of stabilizer of a point. These are the only such maximum independent sets (Cameron and Ku, 2003).

- $\omega(\Gamma_n) = n$. Latin squares!

- $\chi(\Gamma_n) = n$. A normal Cayley graph with $\alpha \omega = |V|$ satisfies $\omega = \chi$ (Godsil, unpublished).
Delsarte-Hoffman Bound

Given any regular graph of degree \(k \) with \(N \) vertices we have the Delsarte-Hoffman bound

\[
\alpha \leq \frac{N}{1 - k/\lambda}
\]

where \(\lambda \) is the least eigenvalue of the (adjacency matrix) of the graph.

For the derangement graph \(N = n! \), \(\alpha = (n - 1)! \), and \(k = D_n = |\mathcal{D}_n| \) so

\[
\lambda \geq \frac{-D_n}{n - 1}
\]

Conjecture (C. Ku)

Equality holds.

Equality would imply the Shannon capacity of \(\Gamma_n \) is \(n \).
The Spectrum of a Normal Cayley Graph

Theorem (Diaconis and Shahshahani, 1981; Babai, 1974)

Let \(\Gamma \) be a normal Cayley graph with adjacency matrix \(A \). Then the eigenvalues of \(A \) are given by

\[
\eta_\chi = \frac{1}{\chi(1)} \sum_{s \in S} \chi(s)
\]

where \(\chi \) ranges over all the irreducible characters of \(G \). Moreover, the multiplicity of \(\eta_\chi \) is \(\chi(1)^2 \).

Proof.

\[
A_{\sigma \tau} = \begin{cases}
1 & \text{if } \sigma = s \tau \text{ for some } s \in S, \\
0 & \text{otherwise.}
\end{cases}
\]
Proof continued...

Consider

\[C := \sum_{s \in S} s \in \mathbb{C}[G] \]

As a linear operator on \(\mathbb{C}[G] \)

\[C \cdot \tau = \sum_{s \in S} s \tau = \sum_{\sigma \in G} \sigma = \sum_{\sigma \in G} A_{\sigma \tau} \sigma \]

So eigenvalues of \(A \) are eigenvalues of \(C \).
Proof completed

By normality, C is in the center of $\mathbb{C}[G]$, so C is a $\mathbb{C}[G]$ module endomorphism. By Schur’s Lemma, C is a constant, say c, on any simple $\mathbb{C}[G]$ module V. Let ρ be the irreducible representation afforded by V and χ its character. Then $\rho(C) = cI$ where $c = \frac{\chi(C)}{\chi(1)} = \sum_{s \in S} \frac{\chi(s)}{\chi(1)}$. As the regular representation decomposes into a direct sum of simple modules with multiplicity equal to dimension, the result follows.
Integrality of Derangement Graph Spectrum

Corollary

The eigenvalues of the derangement graph are integers.
Integer Partitions

Recall that a partition λ of n, written $\lambda \vdash n$ or $|\lambda| = n$, is a weakly decreasing sequence $(\lambda_1, \lambda_2, \ldots, \lambda_l)$ such that $\sum_i \lambda_i = n$. Its length is l and each λ_i is a part of the partition.

Partitions are represented by Ferrers diagrams:

$$(4, 3, 2, 2, 1, 1) \quad \leftrightarrow \quad \begin{array}{cccccc}
\text{ } & \text{ } \\
\text{ } & \text{ } \\
\text{ } & \text{ } \\
\text{ } & \text{ } \\
\text{ } & \text{ } \\
\text{ } & \text{ }
\end{array}$$

and by multiplicity notation:

$$(4, 3, 2, 2, 1, 1) \quad \leftrightarrow \quad 4^1 3^1 2^2 1^2$$
The Irreducible Characters of S_n

- To every permutation σ we associate a partition $\nu(\sigma)$, namely its cycle type.
- Conjugation preserves cycle type, so the conjugacy classes of S_n are in bijection with partitions of n.
- Hence the irreducible characters χ_λ of S_n are also in bijection with partitions of n.
- There exist algorithms to compute the irreducible characters of S_n, but there is no simple formula, in general.
- There are formulae for specific characters.
The Standard Representation of S_n

Let $V = \{e_1, e_2, \ldots, e_n\}$ be the defining representation of S_n:

$$\sigma(e_i) = e_{\sigma(i)}$$

S_n leaves fixed the one dimensional subspace U generated by the vector

$$e_1 + e_2 + \cdots + e_n$$

so U affords the trivial representation (which is clearly irreducible). It turns out that the orthogonal complement $W = U^\perp$ also affords an irreducible representation (of dimension $n-1$) called the standard representation of S_n. Thus we have the equivariant decomposition

$$V = U \oplus W$$
The Standard Character of S_n

By the properties of characters,

$$\chi_V = \chi_U + \chi_W$$

A moment’s thought shows that

$$\chi_V(\sigma) = \# \text{ fixed points of } \sigma$$

Hence

$$\chi_W(\sigma) = \# \text{ fixed points of } \sigma - 1$$

The eigenvalue of Γ_n corresponding to this representation is thus

$$\eta_W = \frac{1}{\chi_W(1)} \sum_{s \in D_n} \chi_W(s) = \frac{-D_n}{n - 1}$$

This is the conjectured least eigenvalue!
The Spectrum of the Derangement Graph

The Standard Character of S_n

<table>
<thead>
<tr>
<th>Class</th>
<th>1^6</th>
<th>2^11^4</th>
<th>2^21^2</th>
<th>2^3</th>
<th>3^11^3</th>
<th>$3^12^11^1$</th>
<th>3^2</th>
<th>4^11^2</th>
<th>4^12^1</th>
<th>5^11^1</th>
<th>6^1</th>
<th>η_λ</th>
</tr>
</thead>
<tbody>
<tr>
<td># Elts</td>
<td>1</td>
<td>15</td>
<td>45</td>
<td>15</td>
<td>40</td>
<td>120</td>
<td>40</td>
<td>90</td>
<td>90</td>
<td>144</td>
<td>120</td>
<td>+265</td>
</tr>
<tr>
<td>6^1</td>
<td>1</td>
<td>+1</td>
</tr>
<tr>
<td>5^11^1</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>-53</td>
</tr>
<tr>
<td>4^12^1</td>
<td>9</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>+15</td>
</tr>
<tr>
<td>4^11^2</td>
<td>10</td>
<td>2</td>
<td>-2</td>
<td>-2</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>+13</td>
</tr>
<tr>
<td>3^2</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>-3</td>
<td>-1</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-11</td>
</tr>
<tr>
<td>$3^12^11^1$</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-5</td>
</tr>
<tr>
<td>3^11^3</td>
<td>10</td>
<td>-2</td>
<td>-2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-5</td>
</tr>
<tr>
<td>2^3</td>
<td>5</td>
<td>-1</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>+7</td>
</tr>
<tr>
<td>2^21^2</td>
<td>9</td>
<td>-3</td>
<td>1</td>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>+5</td>
</tr>
<tr>
<td>2^11^4</td>
<td>5</td>
<td>-3</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>+1</td>
<td>0</td>
<td>+1</td>
</tr>
<tr>
<td>1^6</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-5</td>
</tr>
</tbody>
</table>
The Ring of Symmetric Functions

- S_n acts on elements of $\mathbb{Z}[x_1, x_2, \ldots, x_n]$ by permuting indices.
- The ring of symmetric functions in n variables is
 \[\Lambda_n = \mathbb{Z}[x_1, x_2, \ldots, x_n]^{S_n} \]
- Λ_n admits a natural grading into homogeneous pieces of degree k.
- There are many bases for Λ_n. We need two: the homogeneous symmetric functions and the Schur functions.
Complete Homogeneous Symmetric Functions

The homogeneous symmetric functions are

\[h_{\{\lambda_1, \lambda_2, \ldots, \lambda_l\}} = h_{\lambda_1} h_{\lambda_2} \cdots h_{\lambda_l} \]

where \(h_k \) is the sum of all monomials of degree \(k \). For example \((n = 3)\)

\[
\begin{align*}
 h_1 &= x_1 + x_2 + x_3 \\
 h_2 &= x_1^2 + x_2^2 + x_3^2 + x_1 x_2 + x_2 x_3 + x_1 x_3 \\
\end{align*}
\]

so

\[
\begin{align*}
 h_{(2,1)} &= h_2 h_1 \\
 &= x_1^3 + x_2^3 + x_3^3 + 2x_1^2 x_2 + 2x_1^2 x_3 \\
 &\quad + 2x_2^2 x_3 + 2x_1 x_2^2 + 2x_1 x_3^2 + 2x_2 x_3^2 \\
 &\quad + 3x_1 x_2 x_3 \\
\end{align*}
\]
Young Tableaux

The Schur functions s_λ can be defined combinatorially. To every partition λ associate a semistandard Young tableau T (SSYT T: weakly increasing rows, strictly increasing columns) of shape λ

$\begin{array}{c}
(4, 2, 1) \\
\end{array} \quad \longleftrightarrow \quad \begin{array}{ccc}
1 & 1 & 2 & 2 \\
2 & 3 \\
4
\end{array}$

The type of T is a vector giving the multiplicities of each entry. In the above example, type $T = (2, 3, 1, 1)$. Associated to a tableau is the monomial x^{type}. In the example,

$$x^T := x_1^2 x_2^3 x_3 x_4$$
(Skew) Schur Functions

Generalize. Let $\mu \subseteq \lambda$ (boxwise at upper left corner). Define a skew SSYT of shape λ/μ by removing the boxes in μ and filling in what remains

$$(4, 2, 1)/(2, 1) \leftrightarrow \begin{array}{c} 1 \\ 3 \\ 3 \end{array}$$

The tableau monomial x^T is defined as before. The skew Schur function of shape λ/μ is

$$s_{\lambda/\mu} = \sum_T x^T$$

where the sum is over all skew SSYT of shape λ/μ. If $\mu = \emptyset$ then s_λ is the Schur function of shape λ
Hall Inner Product and Kostka Numbers

Define the canonical (Hall) inner product on symmetric functions

\[(s_\lambda, s_\mu) = \delta_{\lambda,\mu}\]

It turns out that

\[(s_\lambda, h_\mu) = K_{\lambda,\mu}\]

where \(K_{\lambda,\mu}\) is the Kostka number, namely the number of semistandard Young tableau of shape \(\lambda\) and type \(\mu\).
Stanley’s Theorem

Following Stanley, we define

\[d_\lambda = \sum_{s \in D_n} \chi_\lambda(s) \]

Theorem (Stanley, EC2)

\[\sum_{\lambda \vdash n} d_\lambda s_\lambda = \sum_{k=0}^{n} (-1)^{n-k} (n)_k h_k 1^{n-k} \]

where \((n)_k = n!/(n-k)! \) and the partition \(k 1^{n-k} \) means \(k \) followed by \(n-k \) ones.

Proof. Follows from Cauchy identity and Munagghan-Nakayama rule:

\[s_\lambda = \sum_{\sigma \in S_n} \chi_\lambda(\sigma)p_\nu(\sigma) \]
The Spectrum of the Derangement Graph

The Eigenvalues of the Derangement Graph

The Eigenvalues of Derangement Graph

Theorem

The eigenvalues of the derangement graph are given by

$$\eta_\lambda = \sum_{k=0}^{n} (-1)^{n-k} (\binom{n}{k} f_{\lambda/k})$$

Proof. Taking inner product with s_λ gives

$$d_\lambda = \sum_{k=0}^{n} (-1)^{n-k} (\binom{n}{k} K_{\lambda,k \, n-k})$$

But

$$K_{\lambda,k \, n-k} = f_{\lambda/k}$$

where $f_{\lambda/\mu}$ is the number of SYT of skew shape λ/μ (SYT = strictly increasing in rows and columns)
Proof completed

Example. $n = 7$, $\lambda = (4, 2, 1)$, $k = 2$:

$$(4, 2, 1)/(2) \leftrightarrow \begin{bmatrix} 1 & 1 & * & * \\ * & * \\ * & * \end{bmatrix}$$

Finally, use theorem on eigenvalues of Cayley graph

$$\eta_{\lambda} = \frac{1}{\chi_{\lambda}(1)}d_{\lambda}$$

and fact that

$$\chi_{\lambda}(1) = f^{\lambda}$$
A More Explicit Form

Define the shifted partition

$$\mu_i := \lambda_i + l - i$$

Also, define

$$A(\mu) := \begin{vmatrix}
(\mu_1)_{l+k-1} & \mu_1^{l-2} & \mu_1^{l-3} & \cdots & 1 \\
(\mu_2)_{l+k-1} & \mu_2^{l-2} & \mu_2^{l-3} & \cdots & 1 \\
(\mu_3)_{l+k-1} & \mu_3^{l-2} & \mu_3^{l-3} & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\end{vmatrix}$$

and

$$\omega_k(\mu_1, \mu_2, \ldots, \mu_l) := \frac{A(\mu)}{\prod_{1 \leq i \leq j \leq l}(\mu_i - \mu_j)}$$
Another Expression for the Eigenvalues

Theorem

The eigenvalues of the derangement graph are given by

\[\eta_\lambda = \sum_{k=0}^{n} (-1)^{n-k} \omega_k(\mu_1, \mu_2, \ldots, \mu_l) \]

Proof. The Frobenius formula and the hook formula.
Complete Factorial Symmetric Functions

Chen and Louck (1993) defined the complete factorial symmetric functions by

$$w_k(z_1, z_2, \ldots, z_n) = \sum \prod_{i_1+i_2+\cdots+i_n=k, 1\leq j\leq n} (z_j-i_1-i_2-\cdots-i_{j-1}-j+1)_{i_j}$$

These generalize the ordinary complete symmetric functions:

$$w_k(z_1, z_2, \ldots, z_n) = h_k(z_1, z_2, \ldots, z_n) + \text{lower order terms}$$

(They are special cases of the shifted Schur functions of Okounkov and Olshanski.)
A Result of Chen and Louck

Chen and Louck show that

\textbf{Theorem}

\[\omega_k(\mu_1, \mu_2, \ldots, \mu_l) = w_k(\mu_1, \mu_2, \ldots, \mu_l) \]
A Lemma of Verde-Star

Idea of Proof. The key result is the following

Lemma (Verde-Star, 1991)

The divided difference of the falling factorial function is

\[
\frac{(x)_{m+1} - (y)_{m+1}}{x - y} = \sum_{0 \leq k \leq m} (x)_k (y - k - 1)_{m-k}
\]

Iterating this lemma yields the result.
Eigenvalues Again

Theorem

The eigenvalues of the derangement graph are given by

\[\eta_\lambda = \sum_{k=0}^{n} (-1)^{n-k} w_k(\mu_1, \mu_2, \ldots, \mu_l) \]

where \(\mu \) is the shifted partition associated to \(\lambda \), \(n = |\lambda| \), and \(w_k(\mu_1, \mu_2, \ldots, \mu_l) \) is the complete factorial symmetric function defined above.

Integrality!
Given a partition, say $\lambda = (4, 3, 2, 1, 1)$ we define two subpartitions:

$\lambda_h \rightarrow \begin{array}{c}
\bullet \\
\bullet
\end{array} =: \lambda - h$

$\lambda - 1 \rightarrow \begin{array}{c}
\bullet \\
\bullet
\end{array} =: \lambda - 1$
The Main Theorem

Theorem

The eigenvalues of the derangement graph satisfy the following recurrence:

\[\eta_\lambda = (-1)^h \left(\eta_{\lambda-h} + (-1)^{\lambda_1} h \eta_{\lambda-1} \right) \]

with initial condition \(\eta_\emptyset = 1 \).

For example (denoting the eigenvalue by the partition):

\[(-1)^8 \left(\begin{array}{c} \hline \hline \hline \end{array} \right) + (-1)^4 \cdot 8 \cdot \begin{array}{c} \hline \hline \hline \end{array} \]
Proof of Main Theorem

Proof. Follows from the recurrence relation for complete factorial symmetric functions (Chen and Louck):

\[
w_k(z_1, z_2, \ldots, z_n) = w_k(z_2 - 1, z_3 - 1, \ldots, z_n - 1) \\
+ z_1 w_{k-1}(z_1 - 1, z_2 - 1, \ldots, z_n - 1)
\]
Proof of Ku’s Conjecture

Theorem
Ku’s conjecture is true. Moreover, for \(n \geq 5 \) the least eigenvalue of the derangement graph \(\Gamma_n \) is uniquely achieved by the standard representation (namely, the shape \(\lambda = (n - 1, 1) \)).

Proof (outline).

▶ The maximum eigenvalue is achieved by the trivial representation:

\[
\begin{array}{cccc}
\text{ } & \text{ } & \text{ } & \text{ } \\
\text{ } & \text{ } & \text{ } & \text{ }\\
\text{ } & \text{ } & \text{ } & \text{ }\\
\end{array} \quad \text{ } \text{ } \begin{array}{cccc}
\text{ } & \text{ }\\
\text{ } & \text{ }\\
\text{ } & \text{ }\\
\end{array} = D_n
\]

General result.
Proof continued...

- The conjecture holds for hooks.

A calculation.

- The conjecture holds for near hooks

Another calculation.
The conjecture holds for all shapes. By above may assume \(\lambda \) is neither a hook \((n = h)\) nor a near hook \((n = h + 1)\). So we may assume \(n \geq h + 2 \) and \(h > l \geq 2 \). Thus...
Proof concluded

\[|\eta_\lambda| = |\eta_{\lambda-h} + (-1)^\lambda h\eta_{\lambda-1}| \]
\[\leq |\eta_{\lambda-h}| + h|\eta_{\lambda-1}| \]
\[\leq D_{n-h} + hD_{n-l} \]
\[\leq (1 + h)D_{n-l} \]
\[\leq (n - 1)D_{n-l} \]
\[\leq (n - 1)D_{n-2} \]
\[= D_{n-1} + (-1)^n \]
\[\leq D_{n-1} + 1 \]
\[< D_{n-1} + D_{n-2} \]
\[= \frac{D_n}{n - 1} \]
\[= |\eta(n-1,1)| \]
Interesting Sequences

- Interesting sequences arise from special cases. Example: staircase shapes

\[
a_m = - [a_{m-2} + (-1)^m (2m - 1) a_{m-1}] \\
0, -1, -5, 36, 329, -3655, \ldots
\]

Sloane’s online encyclopaedia of integer sequences gives this sequence *modulo signs* as \(y(-1)\) where \(y(x)\) is the so-called Bessel polynomial.
A Question

Question: Do the central characters of the symmetric group themselves obey a recurrence?