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Abstract Martin and Wagner determined the integral eigenvalue spectrum of
the simplicial rook graphs on the triangular lattice by explicitly constructing
their eigenvectors. In this work we deduce the same result by instead con-
structing the characteristic polynomials for this class of graphs. The resulting
analysis provides a neat explanation for the observed spectral structure.
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1 Introduction

Let Cn,d denote the set of weak d-compositions of n. That is,

Cn,d = {(x1, . . . , xd) :

d∑

i=1

xi = n and xi ≥ 0 for 1 ≤ i ≤ d}.

We define a graph S(n, d) on Cn,d by joining two compositions if they differ
in precisely two entries. The graph S(n, d) is called a simplicial rook graph,
because the vertices can be identified with the lattice points inside the nth

dilate of the standard simplex, where two points are joined by an edge if they
lie upon the same lattice line. The terminology arises because we may view
two points joined by an edge as a pair of rooks on a simplicial chessboard.
In particular, the number of non-attacking rooks on such a chessboard is the
independence number of the graph.
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Simplicial rook graphs were first defined and studied in a very nice paper by
Martin and Wagner [5], although the independence number of S(n, 3), namely
⌊(2n+3)/3⌋, was obtained earlier (and independently) by Blackburn, Paterson,
and Stinson [2] and Nivasch and Lev [6]. (See also the discussion in [4].) It is not
difficult to see ([5], Prop. 2.1) that S(n, d) has

(
n+d−1

n

)
vertices and is regular of

degree n(d−1). Martin and Wagner determined the spectrum of S(n, 3) for all
n, and, on the basis of computational evidence, conjectured that the spectra
of all the graphs S(n, d) are integral. They also conjectured that the least
eigenvalue of S(n, d) is equal to max{−n,−

(
d
2

)
}, and gave conjectured values

for some of their multiplicities. 1 All of these conjectures were subsequently
confirmed by some very clever arguments in a paper of Brouwer, Cioabă,
Haemers, and Vermette [3], who also proved several other interesting results
about simplicial rook graphs. (See also [7].) For more recent results on the
independence numbers of simplicial rook graphs, see [1].

Many questions about these graphs remain unanswered, such as the general
eigenvalue spectrum of S(n, d) and the exact independence number of S(n, d).
These appear to be difficult problems, especially because, as was pointed out
by Martin andWagner, these graphs do not seem to have nice graph theoretical
characterizations; in particular, they are generally neither vertex-transitive nor
distance-regular.

We do not solve these problems here. Instead, we revisit the computation
of the eigenvalue spectra of the simplicial rook graphs with d = 3. As noted
above, this problem was already solved by Martin and Wagner, who observed
that the eigenvectors of S(n, 3) can be given a nice geometric interpretation in
terms of lines and hexagons. One feature of the spectra of the graphs S(n, 3)
is their dependence on the parity of n, which appears somewhat mysterious in
the treatment of [5]. The purpose of this work is to derive the characteristic
polynomials of the graphs S(n, 3), thereby providing a simpler explanation
for the observed structure of the eigenvalue spectra, including their modular
dependence. Along the way we discover a matrix whose eigenanalysis may be
of independent interest. We end with some remarks on the higher dimensional
cases.

2 Simplicial lattice lines

To find the spectra of the simplicial rook graphs S(n, 3), we will exploit the
fact that the lattice lines have a particularly simple intersection pattern when
d = 3. Let A(n, d) be the adjacency matrix of S(n, d). Fix a pair (i, j) with
1 ≤ i < j ≤ d and an integer k with 0 ≤ k ≤ n. Fix a weak composition

1 Least eigenvalues are of interest in their own right, but also because they are connected
to the independence number α of a graph via the Hoffman bound, which states that α ≤
|V |/(1 − k/τ), where |V | is the number of vertices, k is the degree, and τ is the least
eigenvalue. But the Hoffman bound is not always exact. For instance, for S(n, 3) with n > 3,
the Hoffman bound gives α < 3(n + 2)(n + 1)/(4n + 6), which is weaker than the actual
bound given above.
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α = (α1, . . . , 0
︸︷︷︸

i

, . . . , 0
︸︷︷︸

j

, . . . , αd) with weight |α| :=
∑

s αs = n− k. Define

the line at α in the direction (i, j) by 2

Lα
ij = {(α1, . . . , m

︸︷︷︸

i

, . . . , k −m
︸ ︷︷ ︸

j

, . . . , αd) : 0 ≤ m ≤ k} ⊂ Cn,d.

We also denote this line by

L
(α1,...,αi−1,∗,αi+1,...,αj−1,∗,αj+1,...,αd)
ij

where the stars represent the pairs (0, k), (1, k−1), . . . , (k, 0). Write |L| for the
cardinality of L. Observe that the line Lα

ij could contain only a single point of

S(n, d). For instance, when d = 3, the line L
(∗,∗,n)
12 contains only (0, 0, n) itself.

We require these degenerate lines in what follows.
From the above construction we deduce that the total number of lines of

the form Lα
ij is

ℓ(n, d) : =

(
d

2

) n∑

k=0

(
n− k + d− 3

n− k

)

=

(
d

2

) n∑

k=0

(
k + d− 3

k

)

=

(
d

2

)(
n+ d− 2

n

)

, (1)

as there are
(
d
2

)
choices for the pair i < j, and

(
n−k+d−3

n−k

)
weak compositions

of n− k into d− 2 parts.
If we were to write p(n, d) for the number of points of S(n, d), then the

previous equation could also be written

ℓ(n, d) =

(
d

2

)

p(n, d− 1). (2)

This can also be explained geometrically. Let ∆ ∈ Rd be the regular simplex
whose vertices are the permutations of (n, 0, . . . , 0). Assign labels to the facets
according to the prescription

Fi := {(x1, . . . , xd) ∈ ∆ : xi = 0}.

Every line of the form Lα
ij is uniquely specified by its direction and by its

intersection point with the facet Fi. As there are
(
d
2

)
directions, and p(n, d−1)

points on any facet, (2) follows.

2 Remarks. (1) We refer to Lα
ij as a ‘line’, although technically it is just a finite set of

points lying along a lattice line. (2) The lines Lα
ij are cliques of S(n, d), but we prefer the

more geometric language in this context.
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Write x ∈ L if the point x is contained in the line L. Let Q be the incidence
matrix of points versus lines, so that

QxL =

{

1, if x ∈ L, and

0, otherwise.

By definition, two points are adjacent in S(n, d) if there exists a line passing
through both of them. Moreover, because we permit degenerate lines, each
point is contained in exactly

(
d
2

)
lines. Hence,

A = QQT −

(
d

2

)

I. (3)

We note in passing that, as QQT is positive definite, (3) implies that the
minimum eigenvalue of A(n, d) is at least −

(
d
2

)
.

We wish to find the spectrum of A, or, equivalently, that of Y := QQT ,
whose eigenvalues differ from those of A by the constant

(
d
2

)
. We use a standard

fact from linear algebra that the spectrum of QQT is identical to the spectrum
of M := QTQ up to zeros. By construction,

ML,L′ = |L ∩ L′|. (4)

In the next section we construct M explicitly when d = 3, and in the following
section we find its spectrum.

3 The case d = 3

Now fix d = 3. Order the lines in triplets, as follows:

1) L
(∗,∗,n)
12 , L

(∗,n,∗)
13 , L

(n,∗,∗)
23 ,

2) L
(∗,∗,n−1)
12 , L

(∗,n−1,∗)
13 , L

(n−1,∗,∗)
23 ,

...

n) L
(∗,∗,1)
12 , L

(∗,1,∗)
13 , L

(1,∗,∗)
23 ,

n+ 1) L
(∗,∗,0)
12 , L

(∗,0,∗)
13 , L

(0,∗,∗)
23 .







(5)

A line L contained in a triplet i contains i points and has weightw(L) = n−i+1
(corresponding to the fixed entry of the superscript). Evidently, M will be a
3(n+ 1)× 3(n+ 1) matrix.

Define two lines L and L′ to be parallel if they share the same subscript
(for then the corresponding lattice lines are parallel in the geometric sense.)
If L 6= L′, they do not meet. If L = L′, then they meet in |L| points.

If the lines are not parallel (written L ∦ L′), then either they do not meet,

or they intersect in one point. Consider, for instance, L
(∗,∗,ℓ)
12 and L

(∗,k,∗)
13 .

The only way for them to meet is to share a point of the form (j, k, ℓ) with

4            
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j = n− k − ℓ. Such a point will exist on each line whenever ℓ+ k ≤ n, which

is to say, whenever w(L
(∗,∗,ℓ)
12 ) + w(L

(∗,k,∗)
13 ) ≤ n. Similar considerations apply

to intersections of the form L12 ∩L23 and L13 ∩L23. Therefore, in general we
have

MLL′ = |L ∩ L′| =







|L|, if L = L′,

1, if L ∦ L′ and w(L) + w(L′) ≤ n, and

0, otherwise,

(6)

It follows that the entries of the matrix M depend only on the triplet to
which each line belongs, and whether or not the lines are parallel. Thus, the
matrix M naturally breaks up into 3 × 3 sized blocks Mij , where i and j
label the triplets. Let L belong to triplet i and L′ belong to triplet j, so that
w(L) = n− i+ 1 and w(L′) = n− j + 1.

Consider first the case i = j. If L = L′, then (Mii)LL = i. If L ∦ L′, there
are two cases, depending on the weights of the lines. If 2(n − i + 1) ≤ n, or
equivalently, 2i− 2 ≥ n, then (Mii)LL′ = 1, else (Mii)LL′ = 0. That is,

(Mii)LL′ =







i, if L = L′,

1, if L ∦ L′ and 2i− 2 ≥ n, and

0, otherwise.

Let I denote the 3× 3 identity matrix, J the 3× 3 all-ones matrix, and set

K := J − I

(the adjacency matrix of the 3 × 3 complete graph). Define Ξ(P ) = 1 if the
proposition P is true, and Ξ(P ) = 0 if P is false. Then, with the ordering of
lines given in (5), we may write

Mii = iI +KΞ(2i− 2 ≥ n), (7)

If i 6= j, then the same ordering of lines yields

Mij = KΞ(i+ j − 2 ≥ n). (8)

(It is these dependencies on n that ultimately explains why the spectrum of
S(n, 3) depends upon the parity of n.) Putting everything together, we can
write M elegantly in block matrix form as

M =










I 0 0 · · · 0
0 2I 0 · · · 0
0 0 3I · · · 0
...

... · · ·
. . .

...
0 0 0 · · · (n+ 1)I










+










0 0 · · · 0 K
0 0 · · · K K
0 · · · K K K
... . .

. ...
...

...
K K K · · · K










. (9)

In the next section we exploit the simple form of this matrix to find its spec-
trum.
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4 The eigenvalues of M

Define the following two (n+ 1)× (n+ 1) matrices:

X :=










1 0 0 · · · 0
0 2 0 · · · 0
0 0 3 · · · 0
...
... · · ·

. . .
...

0 0 0 · · · n+ 1










and T :=










0 0 · · · 0 1
0 0 · · · 1 1
0 · · · 1 1 1
... . .

. ...
...

...
1 1 1 · · · 1










.

When n = 0 we set T = (1). Then we can write (9) compactly as

M = X ⊗ I + T ⊗K, (10)

where A ⊗ B is the Kronecker product of A and B. We wish to find the
characteristic polynomial χM (x) := det(M − xI) of M . To do so, we proceed
as follows.

The matrix K is clearly diagonalizable, with characteristic polynomial

χK(µ) = −(µ− 2)(µ+ 1)2. (11)

Let v be an eigenvector of K with eigenvalue µ, so that Kv = µv. Next,
observe that the matrix

B(µ) := X + µT

is real and symmetric, so also diagonalizable. Let u be an eigenvector of B(µ)
with eigenvalue λ, so that B(µ)u = λu. Then from (10) we have

M(u⊗ v) = Xu⊗ v + Tu⊗ µv = B(µ)u ⊗ v = λ(u⊗ v).

Thus, the eigenvalues of M may be found by computing the eigenvalues of
B(µ) for each value of µ. 3 As the roots of (11) are µ = {−1,−1, 2}, the
spectrum of M consists of the eigenvalues of B(−1) (each with multiplicity
two), together with the eigenvalues of B(2) (each with multiplicity one). We
summarize these results in the following.

Proposition 1 For any matrix C, let Σ(C) denote the multiset of eigenvalues
of C. Then, with the definitions above,

Σ(M) =
⊎

µ∈{−1,−1,2}

Σ(B(µ)),

where ⊎ denotes multiset union. Equivalently, the characteristic polynomial of
M is given (possibly up to an overall constant) by

χM (x) ∼ (χB(−1)(x))
2χB(2)(x).

(Here, ‘∼’ denotes proportionality.)

3 We may also obtain the eigenvectors of M by letting u and v vary over the eigenvectors
of K and B(µ), respectively. It would be interesting to relate these to the hexagon and line
eigenvectors used in [5].

6            
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The characteristic polynomial of B(µ) is

χB(µ)(x) := det(−xI +X + µT ).

As T is invertible, and we may factor it out. Set

r := n+ 1, (12)

and define
Hµ(r;x) := (−xI +X)T−1 + µI, (13)

so that Hµ(r, x)T = −xI + Bµ. Inverting T and multiplying, we obtain
Hµ(1, x) = −x+ 1 + µ, and, for r > 1,

Hµ(r;x) =













µ 0 0 · · · 0 x− 1 −(x− 1)
0 µ 0 · · · x− 2 −(x− 2) 0
...

...
. . .

. . . . .
. ...

...
...

... . .
.
. .
. . . .

...
...

x− r + 1 −(x− r + 1) 0 · · · · · · µ 0
−(x− r) 0 · · · · · · · · · · · · µ













.

(14)
Set

pµ(r;x) := detHµ(r;x), (15)

so that
χB(µ)(x) = pµ(r;x) det T. (16)

It is easy to see (by row operations bringing T to upper triangular form) that
detT = ±1. As we are only interested in the zeros of χB(µ)(x), it suffices to
compute pµ(r;x) up to an overall constant.

There are two approaches. Using row and column operations, one can show
that pµ(r;x) factors nicely. We sketch this technique in two special cases, which
suffice to illustrate the general method. The second approach is to derive a
recurrence relation for pµ(r;x). Although the factorization property of pµ(r, x)
is not obvious from the recurrence itself, examination of the data will permit
us to deduce its factored form.

4.1 Row and column operations

We first consider the case µ = −1, and illustrate the general case using the
example of r = 6. From (14) and (15) we have

p−1(6;x) ∼

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0 −(x− 1) x− 1
0 1 0 −(x− 2) x− 2 0
0 0 −(x− 4) x− 3 0 0
0 −(x− 4) x− 4 1 0 0

−(x− 5) x− 5 0 0 1 0
x− 6 0 0 0 0 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

7            
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In what follows we write ‘R’ and ‘C’ to denote the rows and columns of the
matrix, and we ignore overall signs. In the first step, we factor out an x − 4
term from C3 to get

p−1(6;x) ∼ (x − 4)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0 −(x− 1) x− 1
0 1 0 −(x− 2) x− 2 0
0 0 1 x− 3 0 0
0 −(x− 4) −1 1 0 0

−(x− 5) x− 5 0 0 1 0
x− 6 0 0 0 0 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Do R3+R4→R4 to get

p−1(6;x) ∼ (x− 4)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0 −(x− 1) x− 1
0 1 0 −(x− 2) x− 2 0
0 0 1 x− 3 0 0
0 −(x− 4) 0 x− 2 0 0

−(x− 5) x− 5 0 0 1 0
x− 6 0 0 0 0 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Use C3 to clear R3:

p−1(6;x) ∼ (x− 4)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 0 0 0 −(x− 1) x− 1
0 1 0 −(x− 2) x− 2 0
0 0 1 0 0 0
0 −(x− 4) 0 x− 2 0 0

−(x− 5) x− 5 0 0 1 0
x− 6 0 0 0 0 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Notice that this eliminates x − 3 from the matrix. Rather than write out all
the subsequent matrices, we abbreviate the next steps as follows:

– Factor out x− 2 from C4.
– Do R4+R2→R2.
– Clear R4.
– Factor out x− 5 from C2.
– Do R2+R5→R5.
– Clear R2.
– Factor out x− 1 from C5.
– Do R5+R1→R1.
– Clear R5.
– Factor out x− 6 from C1.
– Do R1+R6→R6.
– Factor out x from R6.

The result is

p−1(6;x) ∼ x(x − 1)(x− 2)(x− 4)(x− 5)(x− 6).

Clearly, this method works in general. Moreover, it is evident that p(x)
factors, and it is clear why the result depends on the parity of n: if r is even

8            
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(n is odd), then the final result will be missing a factor of x − r
2 , but if r is

odd (n is even) then the final result will be missing a factor of x − r+1
2 . The

general result (which we also prove below) is

p−1(r;x) ∼







1

x− r/2

r∏

i=0

(x− i), if r is even, and

1

x− (r + 1)/2

r∏

i=0

(x− i), if r is odd.

(17)

The case of µ = 2 is a little more tricky. Now we have

p2(6;x) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2 0 0 0 x− 1 −(x− 1)
0 2 0 x− 2 −(x− 2) 0
0 0 x− 1 −(x− 3) 0 0
0 x− 4 −(x− 4) 2 0 0

x− 5 −(x− 5) 0 0 2 0
−(x− 6) 0 0 0 0 2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

This time, multiply R3 by (x− 4) and R4 by (x− 1) then do R3+R4→R4 to
clear the (4,3) entry. To avoid changing the determinant, we have to divide
the determinant by (x− 1)(x− 4). 4 This gives

p2(6;x) ∼ ((x − 1)(x− 4))−1

×

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2 0 0 0 x− 1 −(x− 1)
0 2 0 x− 2 −(x− 2) 0
0 0 (x− 1)(x− 4) −(x− 3)(x− 4) 0 0
0 (x− 4)(x− 1) 0 −(x− 2)(x− 7) 0 0

x− 5 −(x− 5) 0 0 2 0
−(x− 6) 0 0 0 0 2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

But now multiply C3 by ((x− 1)(x− 4))−1 to normalize the (3,3) entry. This
allows us to clear R3:

p2(6;x) ∼

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2 0 0 0 x− 1 −(x− 1)
0 2 0 x− 2 −(x− 2) 0
0 0 1 0 0 0
0 (x− 4)(x− 1) 0 −(x− 2)(x− 7) 0 0

x− 5 −(x− 5) 0 0 2 0
−(x− 6) 0 0 0 0 2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

4 We need not worry about zero divisors as long as we treat ‘x’ as an indeterminate. In
any case, the denominators will all clear in the end.
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Now repeat this trick by removing a factor of (x− 7)−1 from the determinant,
then multiply R2 by (x− 7), and do R2+R5→R2 to get

p2(6;x) ∼ (x−7)−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2 0 0 0 x− 1 −(x− 1)
0 (x − 5)(x+ 2) 0 0 −(x− 2)(x− 7) 0
0 0 1 0 0 0
0 (x − 4)(x− 1) 0 −(x− 2)(x− 7) 0 0

x− 5 −(x− 5) 0 0 2 0
−(x− 6) 0 0 0 0 2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Now remove a factor of (x − 2)(x− 7) (up to sign) and clear R4 to get

p2(6;x) ∼ (x − 2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2 0 0 0 x− 1 −(x− 1)
0 (x − 5)(x+ 2) 0 0 −(x− 2)(x− 7) 0
0 0 1 0 0 0
0 0 0 1 0 0

x− 5 −(x− 5) 0 0 2 0
−(x− 6) 0 0 0 0 2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Continuing in this fashion, we eventually obtain

p2(6;x) ∼ x(x− 1)(x− 2)(x− 5)(x− 6)(x− 13).

Evidently, p2(6;x) factors. Moreover, we again expect the final result to depend
on the parity of r. But deducing the general form of p2(r;x) from this procedure
is more difficult than in the µ = −1 case. Instead, we will do so in the following
section.

4.2 The recurrence

Theorem 1 The following recurrence holds:

pµ(r;x) = µpµ(r− 1; r− x)− (x− 1)(x− r)pµ(r− 2;x− 1) (r ≥ 2), (18)

with initial conditions pµ(0;x) = 1 and pµ(1;x) = −x+ 1 + µ.

Proof The initial condition pµ(0;x) = 1 is set by fiat to make the recurrence
work, while the second initial condition follows directly from (13). As for the
recurrence itself, we expand by the last column of Hµ(r;x) to get

pµ(r;x) = µ detHµ(r;x)[r|r] + (−1)r(x − 1) detHµ(r;x)[1|r]. (19)

where A[i|j] denotes the matrix obtained from A by removing the ith row and
jth column. To identify the first term in (19), write C := Hµ(n;x)[r|r]. Let P
be the permutation matrix representing the permutation [r − 1, r − 2, . . . , 1]
(in the defining representation). Then PCP−1 (or equivalently, PCP , as P 2 =
1) is the matrix obtained from C by flipping it horizontally and vertically.
Inspection reveals that PCP = Hµ(r − 1; r − x). But detPCP = detC. For
the second term in (19), just expand by the last row of Hµ(r;x)[1|r]. This
gives detHµ(r;x)[1|r] = (−1)r−1(x − r) detHµ(r − 2;x− 1).
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Running out the recurrence, we obtain the following data for 1 ≤ r ≤ 5:

r p−1(r;x) p2(r;x)
1 −x −x+ 3
2 −x(x− 2) −x(x − 5)
3 x(x− 1)(x− 3) x(x − 3)(x− 7)
4 x(x − 1)(x− 3)(x− 4) x(x− 1)(x− 4)(x− 9)
5 −x(x − 1)(x− 2)(x− 4)(x− 5) −x(x− 1)(x− 4)(x− 5)(x− 11)
6 −x(x− 1)(x− 2)(x− 4)(x− 5)(x− 6) −x(x− 1)(x− 2)(x− 5)(x− 6)(x− 13)

These are enough data to make a guess as to the form of pµ(r;x). Of course,
from (17) we already know what to expect when µ = −1 (at least, up to sign):

Proposition 2 We have p−1(0;x) = 1 by definition, and for r > 0,

p−1(r;x) =







(−1)m
1

x−m

2m∏

i=0

(x − i), if r = 2m, and

(−1)m+1 1

x− (m+ 1)

2m+1∏

i=0

(x− i), if r = 2m+ 1.

Proof By induction on r. We have p−1(0;x) = 1 by definition, and p−1(1;x) =
−x from the formula above with r = 1. Then, plugging into the recurrence
(18) gives, for r = 2m ≥ 2,

p−1(2m;x) = −p−1(2m− 1; 2m− x) − (x− 1)(x− 2m)p−1(2m− 2;x− 1)

=
(−1)m

m− x

2m−1∏

i=0

(2m− x− i)

− (x− 1)(x− 2m)(−1)m−1 1

x−m

2m−2∏

i=0

(x − i− 1)

= (1 − (x− 1))
(−1)m+1

x−m

2m∏

i=1

(x− i)

=
(−1)m

x−m

2m∏

i=1

(x − i).

A similar calculation holds for r = 2m+ 1.

Proposition 3 We have

p2(r;x) =







(−1)m
x− (4m+ 1)

(x− (m+ 1))(x−m)

2m∏

i=0

(x − i), if r = 2m, and

(−1)m+1 x− (4m+ 3)

(x− (m+ 1))(x−m)

2m+1∏

i=0

(x− i), if r = 2m+ 1.

11            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

12

Proof This is similar to the previous proof, but more involved, and is omitted.

Combining Propositions 1, 2, and 3, and using (12) and (16), we arrive at
the following.

Theorem 2 Up to sign, the characteristic polynomial of M is given (for m ≥
1) by

χM (x) ∼







x− (4m+ 3)

(x− (m+ 1))3(x−m)

2m+1∏

i=0

(x− i)3, if n = 2m, and

x− (4m+ 1)

(x− (m+ 1))(x−m)3

2m∏

i=0

(x− i)3, if n = 2m− 1.

5 The spectrum of S(n, 3)

Recall that the incidence matrix Q of points versus lines is p× ℓ. When d = 3
we have p =

(
n+2
2

)
= 1

2 (n + 2)(n + 1) and (from Equation (1) or Section 3),
ℓ = 3(n+ 1). With Y = QQT and M = QTQ we have

xℓχY (x) = xpχM (x).

From Theorem 2 we see that zero appears exactly thrice in the spectrum of
M , for any n ≥ 1. Hence, the multiplicity of zero as a root of χY (x) is

p+ 3− ℓ =
1

2
(n+ 2)(n+ 1) + 3− 3(n+ 1) =

(
n− 1

2

)

.

By virtue of (3), the eigenvalues of S(n, 3) are just those of Y , shifted down
everywhere by

(
3
2

)
= 3. This brings us to the final result.

Theorem 3 Up to sign, the characteristic polynomial of S(n, 3) is given (for
m ≥ 1) by







(x+ 3)(
2m−1

2 ) x− 4m

(x− (m− 2))3(x− (m− 3))

2m+1∏

i=1

(x− i+ 3)3, if n = 2m, and

(x+ 3)(
2m−2

2 ) x− (4m− 2)

(x− (m− 2))(x− (m− 3))3

2m∏

i=1

(x − i+ 3)3, if n = 2m− 1.

This reproduces the main result (Theorem 1.1) of [5], and explains the regu-
larity of the observed spectral structure.
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6 Higher dimensions

The methods employed here for d = 3 do not extend easily to higher values
of d. The authors of [5] and [3] did obtain some interesting partial results for
the spectra of S(n, d) for arbitrary n and d, but the general problem remains
stubbornly out of reach. Even the case d = 4 is not known definitively, although
Brouwer et al put forward a conjecture ([3], Section 12) for the answer in this
case. Just as the spectra of the graphs S(n, 3) depend on the parity of n, so do
the spectra of the graphs S(n, 4) depend on congruence classes of n modulo 2,
4, and 6. The appearance of more complicated modular dependencies suggests
that the general answer will not be simple.
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