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1 Fourier Series

1.1 Historical Background

Waves are ubiquitous in nature. Consequently, their mathematical descrip-

tion has been the subject of much research over the last 300 years. Famous

mathematicians such as Daniel Bernoulli, Jean D’Alembert, and Leonhard

Euler all worked on finding solutions to the wave equation.

One of the most basic waves is a

−π π

Figure 1: A string from −π to π

harmonic or sinusoidal wave. Very

early on, Bernoulli asserted that any wave

on a string tied between two points −π
and π (as in Figure 1) could be viewed

as an infinite sum of harmonic waves:

f(x) =
∞∑
n=1

bn sinnx. (1.1)

In other words, harmonic waves are the

building blocks of all waves.

As is usually the case with these things, the problem turned out to be

a bit more subtle than was first thought. In particular, in the beginning

it suffered from a lack of rigour. In 1807, Jean Baptiste Joseph Fourier

submitted a paper to L’Academie des Sciences de Paris in which he asserted

that essentially every function on [−π, π] (and not just those with fixed ends)

is representable as an infinite sum of harmonic functions. Today we call this
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the Fourier series expansion of the function f(x):

f(x) =
1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx) (1.2)

where the coefficients an and bn may be obtained from the function f(x) in a

definite way. Although Fourier was not the first person to obtain formulae for

an and bn (Clairaut and Euler had already obtained these formulae in 1757

and 1777, respectively), Fourier was able to show that the series worked for

almost all functions, and that the coefficients were equal for functions that

agree on the interval.

Fourier’s paper was rejected by a powerhouse trio of mathematicians, La-

grange, Laplace, and Legendre, as not being mathematically rigorous enough.

Fortunately, Fourier was not dissuaded, and finally in 1822 he published one

of the most famous scientific works in history, his Théorie Analytique de la

Chaleur, or Analytic Theory of Heat. Fourier’s book had an immediate and

profound impact on all of science, from Mathematics to Physics to Engi-

neering, and led to significant advances in our understanding of nature. The

essence of the idea is this:

Fourier series are a tool used to represent arbitrary

functions as a sum of simple ones.

Two questions immediately present themselves. First, given a function

f(x), how do we obtain the Fourier coefficients an and bn? This is the

problem of inversion. Second, suppose you have the Fourier coefficients,

and you assemble them into the infinite sum appearing on the right in (1.2).

How do you know that this sum will give you back the function you started
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with? This is the problem of convergence. It turns out that the first

problem is easily solved, whereas the solution to the second problem is quite

involved. For this reason, we will consider these questions in order. But first

we need to generalize our understanding of vectors.

1.2 Inner Product Spaces

By now you are quite familiar with vectors in Rn. A vector u in Rn is just a

collection of numbers u = (u1, u2, . . . , un). We define the sum of two vectors

u and v in Rn by

u+ v = (u1 + v1, u2 + v2, . . . , un + vn), (1.3)

and the product of a vector u and a real number a by

au = (au1, au2, . . . , aun). (1.4)

These operations allow us to define the linear combination au + bv of

two vectors u and v. We say that Rn forms a vector space over R, the real

numbers.

In what follows, it is convenient to consider other kinds of vector spaces,

so a general definition would come in handy. Here it is. 1

Definition. A vector space V over a field F is a set of objects u, v, w, · · · ∈
V , called vectors, that is closed under linear combinations, with scalars taken

1Actually, there are a few other properties, but basically they all follow from the one
property given in the definition. Incidentally, a field is basically just a set of numbers that
you can add, subtract, multiply, and divide. We will only be concerned with two fields,
namely R, the real numbers, and C, the complex numbers.

3



from F. That is,

u, v ∈ V and a, b ∈ F⇒ au+ bv ∈ V. (1.5)

As we have seen, Rn is a vector space over R. Now consider the set F
of all real functions on the interval [−∞,∞]. We define the sum of two

functions f and g by

(f + g)(x) = f(x) + g(x) (1.6)

(this is called pointwise addition), and the product of a scalar and a function

by

(af)(x) = af(x). (1.7)

This makes F into a vector space over R.

Recall that a basis of a vector space V is a collection of vectors that is

linearly independent and that spans the space. The dimension of the

space is the number of basis elements. The standard basis of Rn consists

of the vectors e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 1),

which shows that Rn is n dimensional. How about F? Well, you can check

that a basis consists of the functions f(x0) = 1 as x0 varies from −∞ to ∞.

There is an infinity of such functions, so F is infinite dimensional.

Vector spaces by themselves are not too interesting, so generally one adds

a bit of structure to liven things up. The most important structure one can

add to a vector space is called an inner product, which is just a generalization

of the dot product. A vector space equipped with an inner product is called

an inner product space. For the time being, we will restrict ourselves to

the real field.
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Definition. An inner product on a vector space V over R is a map

(·, ·) → R taking a pair of vectors to a real number, satisfying the following

three properties:

(1) (u, av + bw) = a(u, v) + b(u,w) (linearity on 2nd entry)

(2) (u, v) = (v, u) (symmetry)

(3) (u, u) ≥ 0,= 0⇔ u = 0 (nondegeneracy).

The classic example of an inner product is the usual dot product on Rn,

given by

(u,v) = u · v =
n∑
i=1

uivi. (1.8)

Let’s check that it satisfies all the relevant properties. We have

(u, av + bw) =
n∑
i=1

ui(avi + bwi) = a
n∑
i=1

uivi + b
n∑
i=1

uiwi

= a(u,v) + b(u,w),

so property (1) holds. Next, we have

(u,v) =
n∑
i=1

uivi =
n∑
i=1

viui = (v,u),

so property (2) holds. Finally, we have

(u,u) =
n∑
i=1

u2
i ≥ 0,

because the square of a real number is always nonnegative. Furthermore, the
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expression on the right side above vanishes only if each ui vanishes, but this

just says that u is the zero vector. Hence the dot product is indeed an inner

product.

How about an inner product on F? Well, here we run into a difficulty,

having to do with the fact that F is really just too large and unwieldy. So

instead we define a smaller, more useful vector space L2[a, b] consisting of all

square integrable functions f on the interval [a, b], which means that

∫ b

a

[f(x)]2 dx <∞. (1.9)

Addition of two such functions, and multiplication by scalars is defined as

for F , but the square integrability condition allows us to define an inner

product: 2

(f, g) =

∫ b

a

f(x)g(x) dx. (1.10)

You can check for yourself that this indeed satisfies all the properties of an

inner product. 3

With an inner product at our disposal, we can define many more prop-

erties of vectors. Two vectors u and v are orthogonal if (u, v) = 0, and

the length of a vector u is (u, u)1/2 (where the positive root is understood).

Notice that, for Rn, these are exactly the same definitions with which you

are familiar. 4 The terminology is the same for any inner product space.
2Technically, we ought to write this as (f, g)[a,b] to remind ourselves that the integral

is carried out for the interval [a, b], but people are lazy and never do this. The interval
will usually be clear from context.

3Actually, you will have to use the (generalized) Cauchy-Schwarz inequality, which says
that (f, g)2 ≤ (f, f)(g, g).

4Mathematicians write En for the vector space Rn equipped with the usual dot product,
and they call it Euclidean n-space, to emphasize that this is the natural arena for
Euclidean geometry. We will continue to be sloppy and use Rn for En, which is bad form,
but commonplace enough.
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Thus, as L2[a, b] is a space of functions, one says that the two functions f

and g are orthogonal on the interval [a, b] if (f, g) = 0.

1.3 How to Invert a Fourier Series

Let us return now to where we left off. If

f(x) =
1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx)

on the interval [−π, π], how do we find the coefficients an and bn? The

answer is provided by exploiting a very important property of sinnx and

cosnx, namely that they each form a set of orthogonal functions on [−π, π].

That is, for m,n ∈ {0, 1, 2, . . . },

(sinmx, sinnx) =

πδnm, if m,n 6= 0,

0, if m = n = 0.
(1.11)

(cosmx, cosnx) =

πδnm, if m,n 6= 0,

2π, if m = n = 0.
(1.12)

(sinmx, cosnx) = 0, (1.13)

where

(f, g) =

∫ π

−π
f(x)g(x) dx (1.14)

is the inner product on the vector space of square integrable functions on

[−π, π]. Equation (1.11), for example, says that sinnx and sinmx are or-

thogonal functions on [−π, π] whenever n and m are different. They are

not orthonormal, however, because (sinnx, sinnx) = π 6= 1. This is not a
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problem, but it does mean we must be mindful of factors of π everywhere.

Let’s prove (1.11), as the other equations follow similarly. Recall the

trigonometric identities

cos(α± β) = cosα cos β ∓ sinα sin β (1.15)

sin(α± β) = sinα cos β ± sin β cosα. (1.16)

Adding and subtracting these equations gives

sinα sin β =
1

2
(cos(α− β)− cos(α + β)) . (1.17)

Hence,

(sinnx, sinmx) =

∫ π

−π
sinnx sinmxdx

=
1

2

∫ π

−π
(cos(n−m)− cos(n+m)) dx. (1.18)

Now we observe that ∫ π

−π
cos kx dx = 2πδk,0, (1.19)

because ∫ π

−π
cos kx dx =


1

k
sin kx

∣∣∣π
−π

= 0, if k 6= 0,

2π, if k = 0.

It follows from (1.18) and (1.19) and the fact that n and m are both positive

integers, that

(sinnx, sinmx) =
1

2
(2πδn−m,0 − 2πδn+m,0) = πδnm. (1.20)

Now, given Equation (1.2), the properties of the inner product together
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with Equations (1.11)-(1.13) allow us to compute:

(f, sinmx) =���
���

�1

2
(a0, sinmx) +

∞∑
n=1
(((

((((
(((

an(cosnx, sinmx)

+
∞∑
n=1

bn(sinnx, sinmx)

=
∞∑
n=1

bn · πδnm = πbm ⇒ bm =
1

π
(f, sinmx).

A similar calculation for am yields the inversion formulae for Fourier

series:

an =
1

π
(f, cosnx) =

1

π

∫ π

−π
f(x) cosnx dx

bn =
1

π
(f, sinnx) =

1

π

∫ π

−π
f(x) sinnx dx

(1.21)

Note that, because of the way we separated out the a0 term in (1.2), the first

inversion formula in (1.21) works for n = 0 as well.

1.4 Odd vs. Even Functions

We now wish to calculate some Fourier series, meaning, given a function f(x),

compute the Fourier coefficients an and bn. Before we do this, though, we

derive a few useful theorems regarding integrals of even and odd functions.

Definition. A function f(x) is even if f(−x) = f(x), and odd if f(−x) =

−f(x).

Graphically, an even function is symmetric about the vertical axis, while

an odd function is antisymmetric about the vertical axis, as shown in Fig-

ures 2 and 3, respectively. Note that xk is odd if k is odd, and even if k is
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Figure 2: An even function

Figure 3: An odd function

even.

Theorem 1.1. Let g(x) be even. Then∫ a

−a
g(x) dx = 2

∫ a

0

g(x) dx. (1.22)

Proof. ∫ a

−a
g(x) dx =

∫ 0

−a
g(x) dx+

∫ a

0

g(x) dx

=

∫ 0

a

g(−x) d(−x) +

∫ a

0

g(x) dx

=

∫ a

0

g(x) dx+

∫ a

0

g(x) dx

= 2

∫ a

0

g(x) dx.
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Theorem 1.2. The integral of an odd function over an even interval is zero.

Proof. Let f(x) be odd. Then

∫ a

−a
f(x) dx =

∫ −a
a

f(−x) d(−x) = −
∫ a

−a
f(x) dx = 0.

Theorem 1.3. Let f(x) be odd and g(x) be even. Then∫ a

−a
f(x)g(x) dx = 0.

Proof. f(x)g(x) is odd.

1.5 Examples of Fourier Transforms

At last we come to our first example.

Example 1. f(x) = x for x ∈ [−π, π]. By Theorem 1.3,

an =
1

π

∫ π

−π
x cosnx dx = 0,
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because x is odd but cosnx is even, so all the an vanish. Next, we have

bn =
1

π

∫ π

−π
x sinnx dx

=
2

π

∫ π

0

x sinnx dx

=
2

π

(
− d

dk

∫ π

0

cos kx dx

)∣∣∣∣
k=n

= − 2

π
· d
dk

(
1

k
sin kx

)∣∣∣∣
k=n

=
2

π

(
1

k2
sin kπ − π

k
cos kx

)
k=n

=
2

n
(−1)n+1 .

Hence, on the interval [−π, π]

x =
∞∑
n=1

2

n
(−1)n+1 sinnx . (1.23)

(This is certainly a complicated way of writing x (!))

Example 2.

f(x) =


1, if 0 < x ≤ π,

0, if x = 0,

−1, if −π ≤ x < 0.

(1.24)
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Again an = 0 for all n. Also,

bn =
2

π

∫ π

0

sinnx dx = − 2

nπ
cosnx

∣∣∣π
0

= − 2

nπ
((−1)n − 1)

=

0, if n is even,
4

nπ
, if n is odd.

(1.25)

Hence

f(x) =
4

π

∞∑
n=1

sin(2n− 1)x

2n− 1
. (1.26)

The right hand side of (1.26) is an infinite sum. In Figure 4 we have illus-

trated the shape of the function that results when one takes only the first

term, the first three terms, and the first eleven terms. It turns out that, no

matter how many terms we use, the sum on the right hand side always has

some wiggles left in it, so that it fails to exactly match the step function

(1.24) (also shown in Figure 4). This phenomenon is called ringing, or the

Gibbs phenomenon, after the physicist who first analyzed it in detail. It

occurs because the function f(x) is discontinuous at the origin. Thus, in

some sense (1.26) is a lie, because it is not an exact equality. When we wish

to emphasize this fact, we will write

F (x) =
1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx) , (1.27)

and call this the Fourier series representation of f(x). It then make sense to

ask under what conditions F (x) = f(x) holds. This is precisely the question

of convergence, to which we now turn.
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π−π

1 3

11

Figure 4: The Gibbs phenomenon

1.6 Convergence in the Mean

How bad can this ringing phenomenon be? That is, when does the Fourier

series F (x) converge to the original function f(x)? This is a subtle and

complicated question with which mathematicians have struggled for over a

century. Fortunately, for our purposes, there is a very natural answer for the

functions most likely to arise in practice, namely the piecewise continuous

functions.

Because the Fourier series F (x) may not converge at all, we must proceed

indirectly. Let {gn} be the sequence of partial sums of the Fourier series:

gn(x) :=
A0

2
+

n∑
m=1

(Am cosmx+Bm sinmx). (1.28)

(Obviously, F (x) = limn→∞ gn(x), provided the limit exists.) Define

Dn :=

∫ π

−π
[f(x)− gn(x)]2 dx. (1.29)
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Dn is called the total square deviation of f(x) and gn(x).

Theorem 1.4. The total square deviation Dn is minimized if the constants

An and Bn in (1.28) are chosen to be the usual Fourier series coefficients.

Proof. Recall the definition of the inner product

(f, g) =

∫ π

−π
f(x)g(x) dx.

We wish to minimize

Dn = (f − gn, f − gn).

Using the symmetry and bilinearity of the inner product together with the

orthogonality relations (1.11)-(1.13) we find

Dn =

(
f − A0

2
−

n∑
m=1

(Am cosmx+Bm sinmx) ,

f − A0

2
−

n∑
m=1

(Am cosmx+Bm sinmx)

)
= (f, f)− (f, A0) +

π

2
A2

0

− 2
n∑

m=1

(Am(f, cosmx) +Bm(f, sinmx))

+ π

n∑
m=1

(A2
m +B2

m)

Let k 6= 0. Treating the coefficients as independent variables, we get

0 =
∂Dn

∂Ak
= 2π − 2(f, cos kx),

which implies

Ak =
1

π
(f, cos kx) = ak.

15



Similar analysis shows that A0 = a0 and Bk = bk. Thus the total square

deviation is minimized if the coefficients are chosen to be the usual Fourier

coefficients, as claimed.

To find the minimum value of Dn, we substitute the Fourier coefficients

into Dn to get

Dn,min = (f, f)− π(1
2
a2

0 +
n∑

m=1

(a2
m + b2m)).

Since Dn is nonnegative, we get the following inequality for all n:

1

2
a2

0 +
n∑

m=1

(a2
m + b2m) ≤ 1

π
(f, f).

Now take the limit as n → ∞. The sequence on the left is bounded by the

quantity on the right, and is monotone nondecreasing. So it possesses a limit,

which satisfies the inequality

1

2
a2

0 +
∞∑
m=1

(a2
m + b2m) ≤ 1

π
(f, f) . (1.30)

This result is known as Bessel’s inequality.

Next we introduce another definition.

Definition. A sequence of functions {gn(x)} is said to converge in the

mean to a function f(x) on the interval [a, b] if

lim
n→∞

∫ b

a

[f(x)− gn(x)]2 dx = 0. (1.31)
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If we could show that equality holds in Bessel’s inequality, this would show

that {gn(x)} converges in the mean to f(x). In that case, we would say

that the Fourier series F (x) converges in the mean to f(x). (This is what is

meant by the equal sign in (1.2)). Fortunately, it is true for a large class of

functions.

Theorem 1.5. Let f(x) be piecewise continuous. Then the Fourier series

F (x) converges in the mean to f(x).

For a proof of this theorem, consult a good book on Fourier series.

1.7 Parseval’s Identity

From now on we will suppose that f(x) is piecewise continuous. In that case,

Bessel’s inequality becomes an equality, usually called Parseval’s identity:

1

2
a2

0 +
∞∑
m=1

(a2
m + b2m) =

1

π
(f, f) =

1

π

∫ π

−π
f 2(x) dx . (1.32)

Parseval’s identity can be used to prove various interesting identities. For

example, for the step function

f(x) =


1, if 0 < x ≤ π,

0, if x = 0,

−1, if −π ≤ x < 0.

which is piecewise continuous, we computed the Fourier coefficients in (1.25):

an = 0 and

bn =

0, if n is even,
4

nπ
, if n is odd.
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The left hand side of Parseval’s identity becomes

∞∑
n=1

b2n =
16

π2

∑
n odd

1

n2
,

whereas the right hand side becomes

1

π
(f, f) =

1

π

∫ π

−π
dx = 2.

Equating the two gives the amusing result that

1 +
1

32
+

1

52
+ · · · = π2

8
. (1.33)

1.8 Periodic Extensions

The Fourier series F (x) of a function f(x) defined on the interval [−π, π] is

not itself restricted to that interval. In particular, if

F (x) =
1

2
a0 +

∞∑
n=1

(an cosnx+ bn sinnx),

then

F (x+ 2π) = F (x) . (1.34)

We say that the Fourier series representation F (x) of f(x) is the periodic

extension of f(x) to the whole line. What this actually means is that F (x)

converges in the mean to the periodic extension of f(x).
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3π2ππ−π−2π−3π

Figure 5: The sawtooth function as a periodic extension of a line segment

For example, if

f(x) =

x, for −π < x ≤ π,

0, otherwise.

then F (x) is (more precisely, converges in the mean to) the sawtooth function

illustrated in Figure 5.

1.9 Arbitrary Intervals

There is no reason to restrict ourselves artificially to functions defined on the

interval [−π, π]. The entire development easily extends to functions defined

on an arbitrary finite interval [−L,L] instead of [−π, π]. The simple change

of variable

x→ π

L
x (1.35)
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gives

F (x) =
1

2
a0 +

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
an =

1

L

∫ L

−L
f(x) cos

nπx

L
dx

bn =
1

L

∫ L

−L
f(x) sin

nπx

L
dx

(1.36)

In this case,

F (x+ 2L) = F (x) , (1.37)

showing that the Fourier series F (x) is a periodic extension of f(x), now

with period 2L. From now on we will follow the standard convention and

not distinguish between F (x) and f(x), but you should always understand the

sense in which F (x) is really just an approximation to (the periodic extension

of) f(x).

1.10 Complex Fourier Series

The connection between a function and its Fourier series expansion can be

written more compactly by appealing to complex numbers. Begin by using

Euler’s formula to write

cos
nπx

L
=

1

2

[
einπx/L + e−inπx/L

]
(1.38)

sin
nπx

L
=

1

2i

[
einπx/L − e−inπx/L

]
. (1.39)
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Substitute these expressions into the first equation in (1.36) to get

f(x) =
a0

2
+
∞∑
n=1

[
1

2
(an − ibn)einπx/L +

1

2
(an + ibn)e−inπx/L

]

=
a0

2
+
∞∑
n=1

1

2
(an − ibn)einπx/L +

−∞∑
n=−1

1

2
(a−n + ib−n)einπx/L

= c0 +
∞∑
n=1

cne
inπx/L +

−∞∑
n=−1

cne
inπx/L

=
∞∑

n=−∞

cne
inπx/L,

where

cn =


1
2
(an − ibn), if n > 0,
a0

2
, if n = 0,

1
2
(a−n + ib−n), if n < 0.

Next, use the inversion formulae in (1.36) to compute the complex coefficients

cn in terms of the original function f(x). For example, if n > 0:

cn =
1

2
(an − ibn)

=
1

2L

∫ L

−L
f(x)

(
cos

nπx

L
− i sin

nπx

L

)
dx

=
1

2L

∫ L

−L
f(x)e−inπx/L dx.

A similar computation shows that this formula remains valid for all the other

values of n. We therefore obtain the complex Fourier series representation
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cn

Figure 6: A discrete Fourier spectrum

of a function f(x) defined on an interval [−L,L],

f(x) =
∞∑

n=−∞

cne
inπx/L , (1.40)

together with the inversion formula

cn =
1

2L

∫ L

−L
f(x)e−inπx/L dx . (1.41)

2 The Fourier Transform

2.1 The Limit of a Fourier Series

A natural question to ask at this stage is what happens when L→∞? That

is, can we represent an arbitrary function on the real line as some kind of sum

of simpler functions? The answer leads directly to the idea of the Fourier

transform.

We may interpret (1.40) as saying that the function f(x) on the interval

[−L,L] is determined by its (discrete) Fourier spectrum, namely the set of

all complex constants {cn}. We can represent this metaphorically by means
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k

ck

Figure 7: A discrete Fourier spectrum in terms of wavenumbers

of the graph in Figure 6. 5

It is useful to introduce a new variable

k :=
nπ

L
. (2.1)

k is called the spatial frequency or wavenumber associated to the mode

n. In terms of k, the Fourier spectrum is now given by coefficients depending

on k, as in Figure 7.

Now consider the Fourier “series” of a nonperiodic function f(x). This

means that, in order to capture the entire function, we must take

L→∞. (2.2)

In this limit the spatial frequencies become closely spaced and the discrete

Fourier spectrum becomes a continuous Fourier spectrum, as in Figure 8.

This continuous Fourier spectrum is precisely the Fourier transform of

f(x).

To explore the limit (2.2), begin with Equations (1.40) and (1.41) and
5Technically, this graph makes no sense, because cn is a complex number, but we are

treating it here as if it were real—hence the word ‘metaphorically’.

23



k

c(k)

Figure 8: A continuous Fourier spectrum

use the definition (2.1):

f(x) =
∞∑

n=−∞

cne
inπx/L

�
��*1

∆n

=
∞∑

kL/π=−∞

ckL/πe
ikxL

π
∆k

=
∞∑

kL/π=−∞

cL(k)eikx∆k,

where

cL(k) :=
L

π
ckL/π =

1

2π

∫ L

−L
f(x)e−ikx dx.

Now take the limit L→∞. Then cL(k)→ c(k), where

c(k) =
1

2π

∫ ∞
−∞

f(x)e−ikx dx,

and

f(x) =

∫ ∞
−∞

c(k)eikx dk.

Lastly, to make things look more symmetric, we change the normalization of

the spectrum coefficients, by defining

f̃(k) :=
√

2πc(k).
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The final result is

f̃(k) =
1√
2π

∫ ∞
−∞

f(x)e−ikx dx , (2.3)

called the Fourier spectrum or Fourier amplitudes or Fourier trans-

form of f(x), and

f(x) =
1√
2π

∫ ∞
−∞

f̃(k)eikx dk , (2.4)

called the inverse Fourier transform of f̃(k). If f(x) is periodic on a

finite interval [−L,L], these expressions reduce back to (1.41) and (1.40),

respectively. But they hold more generally for any function. 6

Equation (2.4) reveals how any function f(x) can be expanded as a sum

(really, integral) of elementary harmonic functions eikx weighted by different

amplitudes f̃(k). Moreover, the similarity between (2.3) and (2.4) shows

that, in essence, f(x) and f̃(k) contain the same information. Given one,

you can obtain the other.

In (2.3) and (2.4), the variables x and k are naturally paired. Typically,

one interprets eikx as a wave, in which case x is the distance along the wave

and k becomes the usual wavenumber k = 2π/λ. But often one uses t instead

of x, and ω instead of k, where t denotes ‘time’ and ω denotes ‘angular

frequency’, in which case the Fourier transform and its inverse become
6Well, not quite. The analogue of the question of convergence for Fourier series now

becomes a question of the existence of the integrals, which we will conveniently ignore.
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a−a x

f(x)

1 π/a

k

˜f(k)

Figure 9: The box function and its Fourier transform

f̃(ω) =
1√
2π

∫ ∞
−∞

f(t)e−iωt dt (2.5)

f(t) =
1√
2π

∫ ∞
−∞

f̃(ω)eiωt dω (2.6)

The pairs (x, k) and (t, ω) are referred to as conjugate variables. In either

case, the function being transformed is decomposed as a sum of harmonic

waves.

2.2 Examples

Example 3. [The box function or square filter] (See Figure 9.)

f(x) =

1, if |x| < a,

0, otherwise.
(2.7)
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f̃(k) =
1√
2π

∫ a

−a
e−ikx dx =

1√
2π

e−ika − eika

−ik

=
2a√
2π

sin ka

ka
=

2a√
2π

sinc (ka) . (2.8)

(This last equality defines the ‘sinc’ function. It appears often enough that

it is given a name.)

Example 4. [The Gaussian] The Gaussian function is one of the most im-

portant functions in mathematics and physics. Here we derive an interesting

and useful property of Gaussians.

Begin with the Gaussian function

f(x) = Ne−αx
2

, (2.9)

where N is some normalization constant whose exact value is unimportant

right now. We wish to compute its Fourier transform, namely

f̃(k) =
N√
2π

∫ ∞
−∞

e−αx
2

e−ikx dx.

The trick is to complete the square in the exponent:

−αx2 − ikx = −α
(
x2 +

ik

α
x

)
= −α

(
x2 +

ik

α
x+

(
ik

2α

)2

−
(
ik

2α

)2
)

= −α
(
x+

ik

2α

)2

− k2

4α
.
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Next, change variables from x to u:

u2 = α

(
x+

ik

2α

)2

⇒ u =
√
α

(
x+

ik

2α

)
⇒ du =

√
α dx.

This gives

f̃(k) =
1√
2π

N√
α

∫ ∞+iβ

−∞+iβ

e−u
2

e−k
2/4α du

=
N√
2πα

e−k
2/4α

∫ ∞
−∞

e−u
2

du,

where β := k
√
α/2. Fortunately, we can simply drop the β terms in the

limits. (This follows from Cauchy’s theorem in complex analysis.)

We have reduced the problem to computing a standard Gaussian integral.

As the value of this integral pops up in many places, we illustrate the trick

used to obtain its value.

Lemma 2.1. ∫ ∞
−∞

e−u
2

du =
√
π. (2.10)

Proof. Define

I :=

∫ ∞
−∞

e−u
2

du.

Then

I2 =

∫ ∞
−∞

e−u
2

du

∫ ∞
−∞

e−v
2

dv =

∫ ∞
−∞

e−(u2+v2) du dv

=

∫ ∞
0

dr

∫ 2π

0

e−r
2

r dr dθ = −πe−r2
∣∣∣∞
0

= π.

Hence I =
√
π.
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Figure 10: The Fourier transform of a Gaussian is a Gaussian

Returning to the main thread and putting everything together gives

f̃(k) =
N√
2α
e−k

2/4α . (2.11)

In other words, the Fourier transform of a Gaussian is a Gaussian

(See Figure 10.)

Observe that the width ∆x of f(x) is proportional to 1/
√
α, while the

width ∆k of f̃(k) is proportional to
√
α. Hence, as one function gets nar-

rower, the other gets wider. In passing we remark that this fact is intimately

related to Heisenberg Uncertainty Principle. In quantum theory the

wavefunction of a localized particle may be described by a wavepacket, and

its momentum space wavefunction is essentially its Fourier transform. If the

wavepacket is Gaussian in shape, then so is its momentum space wavefunc-

tion. As a consequence, the more localized the particle, the less well known

is its momentum.
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3 The Dirac Delta Function

Equations (2.3) and (2.4) are supposed to be inverses of one another. That

is, given f(x), one can use (2.3) to find f̃(k), so plugging f̃(k) into (2.4) one

should recover the original function f(x). It turns out that, as with the case

of Fourier series, this is not generally true. However, we will restrict ourselves

to those functions for which it is true, namely the class of sufficiently smooth

test functions.

Restricting ourselves to this class, we must have

f(x) =
1√
2π

∫ ∞
−∞

f̃(k)eikx dk

=
1

2π

∫ ∞
−∞

dk eikx
∫ ∞
−∞

dx′ f(x′)e−ikx
′

=

∫ ∞
−∞

dx′ f(x′)

{
1

2π

∫ ∞
−∞

dk eik(x−x
′)

}
=

∫ ∞
−∞

dx′ f(x′)δ(x− x′), (3.1)

where we define

δ(x− x′) =
1

2π

∫ ∞
−∞

dk eik(x−x
′) . (3.2)

δ(x−x′) is called a Dirac delta function, and it takes a bit of getting used

to. By virtue of (3.1) it must satisfy the following properties:

1. The most important property (indeed, its defining property) is just

(3.1) itself, which is called the sifting property.

∫ ∞
−∞

f(x′)δ(x− x′) dx′ = f(x) (sifting property). (3.3)

It is called the ‘sifting property’ for the simple reason that, when in-
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tegrated, the delta function selects, or sifts out, the value at x′ = x of

the function against which it is integrated. In other words, it acts like

a sort of continuous analogue of the Kronecker delta.

2. The delta function is an even function:

δ(x− x′) = δ(x′ − x). (3.4)

This follows from (3.2) by changing variables from k to −k:

δ(x′ − x) =
1

2π

∫ ∞
−∞

dk eik(x
′−x) = − 1

2π

∫ −∞
∞

dk e−ik(x
′−x)

=
1

2π

∫ ∞
−∞

dk e−ik(x
′−x) =

1

2π

∫ ∞
−∞

dk eik(x−x
′)

= δ(x− x′).

3. The sifting property is often written as follows. For any sufficiently

smooth test function f ,

∫ ∞
−∞

f(z)δ(z) dz = f(0) . (3.5)

This is entirely equivalent to (3.3), as we now show. It is convenient

here to rewrite (3.3) using Property 2 as∫ ∞
−∞

f(x′)δ(x′ − x) dx′ = f(x). (3.6)

Setting x = 0 in (3.6) yields (3.5) immediately. On the other hand, if

we define a new function g(z) := f(z − x), so that f(z) = g(z + x),
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then (3.5) gives ∫ ∞
−∞

g(z + x)δ(z) dz = g(x).

Now change variables from z to x′ = z + x to get∫ ∞
−∞

g(x′)δ(x′ − x) dx′ = g(x),

which is (3.6).

4. Look at (3.5) closely. On the left side we are adding up various values of

the function f(z) times the delta function δ(z), while on the right side

we have only one value of the function, namely f(0). This means that

the delta function must vanish whenever z 6= 0 (otherwise we would

get an equation like f(0) + other stuff = f(0), which is absurd). Thus,

we must have,

z 6= 0⇒ δ(z) = 0. (3.7)

5. Now let f be the unit function, namely the function f(z) = 1 for all z.

Plugging this into (3.5) gives∫ ∞
−∞

δ(z) dz = 1. (3.8)

In other words, the delta function has unit area.

6. By Property 4, the delta function vanishes whenever z 6= 0, which

means that it is nonzero only when z = 0. That is, only δ(0) is nonzero.

What is the value of δ(0)? By Property 5, the delta function has unit

area, which means that δ(0) must be infinite! (The reason is that dx

is an infinitessimal, and if δ(x) were a finite value at the single point

x = 0, the integral would be zero, not unity.)
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All these properties add up to one strange object. It is manifestly not

a function, for the simple reason that infinity is not a well-defined value.

Instead, it is called a generalized function or distribution. In an effort

to restore a modicum of rigor to the entire enterprise, mathematicians define

the Dirac delta function as follows.

Definition. A sequence {φn} of functions is called a delta sequence if

lim
n→∞

∫ ∞
−∞

φn(x)f(x) dx = f(0) (3.9)

for all sufficiently smooth test functions f(x).

In other words, {φn} is a delta sequence if it obeys the sifting property in

the limit as n → ∞. One then formally defines the Dirac delta function to

be the limit of a delta sequence,

δ(x) = lim
n→∞

φn(x) , (3.10)

even though this limit does not exist! There are many different possible

delta sequences, but in some sense they all have the same limit.

3.1 Examples of Delta Sequences

There is a lot of freedom in the definition of a delta sequence, but (3.9) does

impose a few restrictions on the {φn}. For example, setting f to be the

identity function again gives the requirement that

lim
n→∞

∫ ∞
−∞

φn(x) dx = 1. (3.11)

That is, in the limit, the integrals must be normalized to unity.

33



1

2

−1 1

φ1

1

−

1

2

1

2

φ2

3

2

−

1

3

1

3

φ3

. . .

Figure 11: The delta sequence (3.12). Note that all graphs have unit area.

We now offer some examples of delta sequences.

1.

φn(x) =

0, if |x| ≥ 1/n,

n/2, if |x| < 1/n.
(3.12)

This is illustrated in Figure 11.

2.

φn(x) =
n

π

1

1 + n2x2
. (3.13)

3.

φn(x) =
n√
π
e−n

2x2

. (3.14)

4.

φn(x) =
1

nπ

sin2 nx

x2
. (3.15)

Let’s show that (3.12) is a delta sequence. First, we recall the mean

value theorem from calculus.

Theorem 3.1. Let f be a continuous real function on an interval [a, b]. Then
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there exists a point ξ ∈ [a, b] such that

1

b− a

∫ b

a

f(x) dx = f(ξ).

Applying this theorem, we have

∫ ∞
−∞

φn(x)f(x) dx =

∫ 1/n

−1/n

(n
2

)
f(x) dx

=
(n

2

)( 2

n

)
f(ξ) (mean value theorem)

= f(ξ).

As −1/n ≤ ξ ≤ 1/n, n → ∞ forces ξ → 0. The continuity of f(x) then

gives f(ξ)→ f(0).

3.2 Delta Calculus

Although the delta function is not really a function, we can write down some

relations, called delta function identities, that sometimes come in handy

in calculations. Taken by themselves, the following relations make no sense,

unless they are viewed as holding whenever both sides are integrated up

against a sufficiently smooth test function.

1.

xδ(x) = 0 . (3.16)

This holds because∫
xf(x)δ(x) dx = lim

x→0
xf(x) = 0 if |f | <∞.
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2.

δ(ax) =
1

|a|
δ(x) for a 6= 0 . (3.17)

Assume a > 0. Let ξ = ax and dξ = a dx. Then∫ ∞
−∞

δ(ax)f(x) dx =

∫ ∞
−∞

δ(ξ)f(ξ/a) dξ/a =
1

a
f(0).

The other case is similar.

3.

δ(x) = δ(−x) (δ is even). (3.18)

Set a = −1 in (3.17). (Of course, we already know this, by virtue of

(3.4).)

4.

δ(g(x)) =
∑

simple zeros
of g(x)

δ(x− xi)
|g′(xi)|

. (3.19)

(xi is a simple zero of g(x) if g(xi) = 0 but g′(xi) 6= 0.) Write

g(x) ≈ g′(xi)(x− xi) near a simple zero xi, then use (3.17):

δ[g(x)] =
δ(x− xi)
|g′(xi)|
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If g has N simple zeros then, as δ[g(x)] is nonzero only near a zero of

g(x), we get

∫
f(x)δ[g(x)] dx =

N∑
i=1

∫
near xi

f(x)δ[g(x)] dx

=
N∑
i=1

∫
near xi

f(x)
δ(x− xi)
|g′(xi)|

dx

=
N∑
i=1

f(xi)

|g′(xi)|
.

(Note that none of this makes sense if g(x) has non-simple zeros, be-

cause then we would be dividing by zero.) The next example provides

an amusing application of (3.19).

Example 5.

∫ ∞
−∞

e−x
2

δ(sinx) dx =

∫ ∞
−∞

e−x
2

(
∞∑

n=−∞

δ(x− nπ)

| cosnπ|

)
dx

=
∞∑

n=−∞

e−(nπ)2 . (3.20)

5. Derivatives of delta functions. The derivative of a delta function

is defined via integration by parts:

∫ ∞
−∞

δ′(x)f(x) dx = −f ′(0) . (3.21)

Similar reasoning gives higher order derivatives of delta functions.
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3.3 The Dirac Comb or Shah Function

A Dirac comb or Shah function X(t) is an infinite sum of Dirac delta

functions

XT (t) :=
∞∑

j=−∞

δ(t− jT ), (3.22)

By construction, it is periodic with period T . Hence it can be expanded in a

Fourier series:

XT (t) =
∞∑

n=−∞

cne
2πint/T ,

where

cn =
1

T

∫ t0+T

t0

XT (t)e−2πint/T dt

=
1

T

∞∑
j=−∞

∫ t0+T

t0

δ(t− jT )e−2πint/T dt

=
1

T
.

(The result is the same if t0 = 0, but the computation is a bit more subtle,

because one gets 1/2 at each end.) Plugging back in gives

XT (t) =
1

T

∞∑
n=−∞

e2πint/T . (3.23)

3.4 Three Dimensional Delta Functions

Extending the Dirac delta function to higher dimensions can be a bit tricky.

It is no problem to define a higher dimensional analogue using Cartesian
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coordinates. For example, in three dimensions, we just have

δ(r − r′) = δ(x− x′)δ(y − y′)δ(z − z′) . (3.24)

This satisfies the corresponding sifting property:∫
f(r)δ(r − r′) d3x = f(r′), (3.25)

which we again take to be the definition of the delta function. In spherical

polar coordinates we demand that the following equation obtain:∫
f(r, θ, φ)δ(r − r′)δ(θ − θ′)δ(φ− φ′) = f(r′, θ′, φ′). (3.26)

The only way this can happen is if

δ(r − r′) =
1

|r2 sin θ|
δ(r − r′)δ(θ − θ′)δ(φ− φ′) , (3.27)

because we must compensate for the Jacobian factor in (3.25) when we change

variables. Notice the absolute value signs, which are required.

The three dimensional delta function in spherical polar coordinates ac-

tually arises in physics, especially in electrodynamics. If ∇2 is the usual

Laplacian operator, then the following result holds.

Theorem 3.2.

∇2 1

r
= −4πδ(r). (3.28)

Proof. In spherical polar coordinates we found

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
.
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It follows that, when r 6= 0, we get

∇2 1

r
= 0.

What about r = 0? In that case, the Laplacian operator itself becomes

infinite, so we get infinity. This looks awfully familiar. We have a function

that is zero everywhere except at one point, where it is infinity. The only

thing we need to check to make sure it is a delta function is that it has unit

area.

To do this, recall that the Laplacian of a scalar function is just ∇ ·∇
acting on that scalar function. The gradient operator in spherical polar

coordinates is

∇ = r̂∂r + θ̂
1

r
∂θ + φ̂

1

r sin θ
∂φ,

so

∇1

r
= − r̂

r2
. (3.29)

Now let V be a spherical volume. From Gauss’ theorem we have∫
V

∇2 1

r
dτ =

∫
V

∇ ·∇1

r
dτ = −

∮
∂V

r̂

r2
· dS = −4π.

Thus ∇2(1/r) vanishes everywhere except at r = 0 where it is infinite, but

its integral over a spherical volume is −4π. The only way this can happen is

if (1/4π)∇2(1/r) is a delta function.

4 The Fourier Convolution Theorem

Next we turn to a very useful theorem relating the Fourier transform of a

product of two functions to the Fourier transform of the individual functions.
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Define the convolution of two functions f and g to be

(f ? g)(x) :=

∫ ∞
−∞

dξ f(ξ)g(x− ξ) . (4.1)

Although it does not look like it, this definition is actually symmetric.

Lemma 4.1.

f ? g = g ? f. (4.2)

Proof. Let η = x− ξ. Then

(f ? g)(x) =

∫ ∞
−∞

dξ f(ξ)g(x− ξ)

= −
∫ −∞

+∞
dη f(x− η)g(η)

= (g ? f)(x).

The reason for introducing the notion of convolution is the following result.

Theorem 4.2 (Convolution Theorem for Fourier Transforms).

f̃ g =
1√
2π
f̃ ? g̃ . (4.3)

We say that the Fourier transform of the product is the convolution of the

Fourier transforms (up to some irritating factors of
√

2π).
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Proof.

(̃fg)(k) =
1√
2π

∫
f(x)g(x)e−ikx dx

=
1√
2π

∫
dx e−ikx f(x)

[
1√
2π

∫
g̃(k′) eik

′x dk′
]

=
1√
2π

∫
dk′ g̃(k′)

[
1√
2π

∫
dx f(x) e−i(k−k

′)x

]
=

1√
2π

∫
dk′ g̃(k′) f̃(k − k′)

=
1√
2π

(g̃ ? f̃)(k).

There is an inverse theorem as well.

Theorem 4.3 (‘Inverse’ Convolution Theorem for Fourier Transforms).

f̃ ? g =
√

2πf̃ g̃ . (4.4)

We say that the Fourier transform of the convolution of two functions is the

product of the Fourier transforms (again, up to irritating factors of
√

2π).

Proof. Take the inverse transform of both sides of the convolution theorem

applied to f̃ and g̃.

Here is a silly example of the use of the convolution theorem to evaluate an

integral (because it is easy enough to do the integral directly).

Example 6. We wish to evaluate the following integral.

h(x) =

∫ ∞
−∞

e−(x−x′)2/2e−x
′2/2 dx′.
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Define

f(x) := e−x
2/2.

Then

h(x) = (f ? f)(x).

By the inverse convolution theorem,

h̃(k) = f̃ ? f =
√

2π[f̃(k)]2.

From Example 4, we have

f̃(k) = e−k
2/2 ⇒ [f̃(k)]2 = e−k

2

,

so

h̃(k) =
√

2πe−k
2

,

and

h(x) =
1√
2π

∫
h̃(k)eikx dk =

∫
e−k

2

eikx dk =
√
πe−x

2/4.

5 Hermitian Inner Product

Recall that in Section 1.2 we introduced the notion of an inner product space

as a vector space over some field equipped with an inner product taking values

in the field. At the time, we were only concerned with real numbers, but now

we have complex numbers floating around, so we want to define a new inner

product appropriate to the complex field.

43



Definition. An inner product (also called a sesquilinear or Hermitian

inner product) on a vector space V over C is a map (·, ·) → C taking a

pair of vectors to a complex number, satisfying the following three properties:

(1) (u, av + bw) = a(u, v) + b(u,w) (linearity on 2nd entry)

(2) (u, v) = (v, u)∗ (Hermiticity)

(3) (u, u) ≥ 0,= 0⇔ u = 0 (nondegeneracy).

(Note that Property 3 makes sense, because by virtue of Property 2, (u, u)

is always a real number.) Given two complex valued functions f and g, we

will define

(f, g) =

∫ ∞
−∞

f ∗(x)g(x) dx. (5.1)

You can check that, by this definition, (f, g) satisfies all the axioms of a

Hermitian inner product.

5.1 Invariance of Inner Product: Parseval’s Theorem

The naturality of the inner product (5.1) is made clear by the following

beautiful theorem.

Theorem 5.1.

(f, g) = (f̃ , g̃) . (5.2)

Before proving it, let’s pause to think about what it means. Recall that the

ordinary Euclidean inner (dot) product was invariant under rotations. If u

and v are two vectors and R is a rotation matrix, then we observed that

(u, v) = (u′, v′),
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where u′ = Ru and v′ = Rv. That is, rotations preserve the Euclidean inner

product. Rotations are a special kind of change of basis, so we could say in

this case that the inner product is preserved under a change of basis. We can

view the Fourier transform (2.3) as a kind of infinite dimensional change of

basis, in which case Theorem 5.1 says that this change of basis preserves the

inner product. In other words, under Fourier transformation, the lengths and

angles of infinite dimensional vectors are preserved. In this sense, the Fourier

transformation doesn’t really change the function, just the basis in which it

is expressed. In any case, the proof of Theorem 5.1 is a simple application

of the delta function.

Proof.

(f, g) =

∫
f ∗(x)g(x) dx

=

∫
dx

[
1√
2π

∫
f̃(k) eikx dk

]∗
×
[

1√
2π

∫
g̃(k′) eik

′x dk′
]

=

∫
dk dk′ f̃ ∗(k)g̃(k′)× 1

2π

∫
dx ei(k

′−k)x

=

∫
dk dk′ f̃ ∗(k)g̃(k′)δ(k′ − k)

=

∫
dk f̃ ∗(k)g̃(k)

= (f̃ , g̃).

Setting f = g in Theorem 5.1 yields a continuous analogue of Parseval’s

identity.
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Corollary 5.2 (Parseval’s Theorem).

(f, f) = (f̃ , f̃) . (5.3)

Equivalently, ∫
|f(x)|2 dx =

∫
|f̃(k)|2 dk . (5.4)

5.2 Wiener-Khintchine Theorem

In this section we briefly describe an important application of Parseval’s

theorem to signal analysis. Let E(t) represent (the electric field part of) an

electromagnetic wave. Let I(t) be the instantaneous intensity (power

per unit area) carried by the wave. Then

I(t) = k|E(t)|2 (5.5)

for some constant k. Suppose we observe the wave for a finite time T (or

suppose it only exists for that time). Define

V (t) =

E(t), for |t| ≤ T ,

0, otherwise,
(5.6)

and let Ṽ (ω) be its Fourier transform (as in (2.5)). The average intensity

I over the period T can be written

I = 〈I(t)〉 =
k

T

∫ T/2

−T/2
|E(t)|2 dt =

k

T

∫ ∞
−∞
|V (t)|2 dt. (5.7)
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By Parseval’s theorem

I =
k

T

∫ ∞
−∞
|Ṽ (ω)|2 dω. (5.8)

This allows us to interpret

P (ω) :=
k

T
|Ṽ (ω)|2 (5.9)

as the power spectrum of the signal, namely the average power per unit

frequency interval. Basically, P (ω) tells us the amount of power that is

carried in each frequency band.

There is a very interesting relation between the power spectrum of an

electromagnetic wave and the amplitude of the signal at different times. More

precisely, we define the following statistical averages.

Definition. The cross correlation function of two functions f(t) and

g(t) defined over some time interval [−T/2, T/2] is

〈f ∗(t)g(t+ τ)〉 =
1

T

∫ T/2

−T/2
f ∗(t)g(t+ τ) dt. (5.10)

The cross correlation function of two functions provides information as to

how the two functions correlate at times differing by a fixed amount τ .

Definition. The autocorrelation function of f(t) is

〈f ∗(t)f(t+ τ)〉. (5.11)

The autocorrelation function gives information as to how a function correlates
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with itself at times differing by a fixed amount τ . It is related to the degree of

coherence of the signal. The Wiener-Khintchine Theorem basically says

that the power spectrum is just the Fourier transform of the autocorrelation

function of a signal. It is used in both directions. If one knows the power

spectrum, one can deduce information about the coherence of the signal, and

vice versa.

Theorem 5.3 (Wiener-Khintchine). Assume that V (t) vanishes for |t| > T .

Then ∫ ∞
−∞
〈V ∗(t)V (t+ τ)〉e−iωτ dτ =

2π

k
P (ω). (5.12)

Proof. We have

〈V ∗(t)V (t+ τ)〉

=
1

T

∫ T/2

−T/2
V ∗(t)V (t+ τ) dt

=
1

T

∫ ∞
−∞

V ∗(t)V (t+ τ) dt

=
1

T

∫ ∞
−∞

dt V (t+ τ)

[
1√
2π

∫ ∞
−∞

Ṽ (ω)eiωt dω

]∗
=

∫ ∞
−∞

dω
1

T
Ṽ ∗(ω)eiωτ

[
1√
2π

∫ ∞
−∞

V (t+ τ)e−iω(t+τ) dt

]
=

∫ ∞
−∞

dω
1

T
Ṽ ∗(ω)Ṽ (ω)eiωτ

=

∫ ∞
−∞

dω
1

k
P (ω)eiωτ

Now take the Fourier transform of both sides (and watch out for
√

2π’s).
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6 Laplace Transforms

Having discussed Fourier transforms extensively, we now turn to a different

kind of integral transform that is also of great practical importance. Laplace

transforms have many uses, but one of the most important is to electrical

engineering and control theory, where they are used to help solve linear dif-

ferential equations. They are most often applied to problems in which one

has a time dependent signal defined for 0 ≤ t ≤ ∞. For any complex number

s, define

F (s) =

∫ ∞
0

e−stf(t) dt. (6.1)

This is the Laplace transform of f(t). We also write

F (s) = L{f(t)} (6.2)

to emphasize that the Laplace transform is a kind of linear operator on

functions.

6.1 Examples of Laplace Transforms

Example 7.

F (s) = L{t} =

∫ ∞
0

te−st dt = − d

ds

∫ ∞
0

e−st dt

=
d

ds

(
1

s
e−st

)∣∣∣∣∞
t=0

=
1

s2
. (6.3)

Observe that, if s = σ + iω, then

F (s) =

∫ ∞
0

te−σte−iωt dt =

∫ ∞
0

te−σt cosωt dt− i
∫ ∞

0

te−σt sinωt dt
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These integrals converge if σ > 0 and diverge if σ ≤ 0. So the above equality

is valid only for Re s > 0.

Example 8.

F (s) = L{eat} =

∫ ∞
0

e−(s−a)t dt =
1

s− a
(Re s > a). (6.4)

Remark. These examples show that, in general, the Laplace transform of a

function f(t) exists only if Re s is greater than some real number, determined by

the function f(t). These limits of validity are usually included in tables of Laplace

transforms.

Example 9.

F (s) = L{sin at} =
1

2i
L{eiat − e−iat}

=
1

2i

(
1

s− ia
− 1

s+ ia

)
=

a

s2 + a2
(Re s > |Im a|) (6.5)

F (s) = L{cos at} =
1

2
L{eiat + e−iat}

=
1

2

(
1

s− ia
+

1

s+ ia

)
=

s

s2 + a2
(Re s > |Im a|) (6.6)

Example 10. [Laplace transform of a delta function]

L{δ(t− a)} =

∫ ∞
0

δ(t− a)e−st dt = e−as (a > 0). (6.7)
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Remark. The Laplace transform of δ(t) cannot be defined directly, because the

limits of integration include zero, where the delta function is undefined. Neverthe-

less, by taking the (illegitimate) limit of (6.7) as a→ 0, we may define

L{δ(t)} = 1. (6.8)

Example 11. The gamma function Γ(z) is defined by

Γ(z) :=

∫ ∞
0

tz−1e−t dt . (6.9)

This integral exists for all complex z with Re z > 0. It follows that

L{tz} =

∫ ∞
0

tze−st dt =
Γ(z + 1)

sz+1
(Re z > −1,Re s > 0). (6.10)

The gamma function shows up a lot in math and physics, so it is worth noting

a few of its properties. Integration by parts gives

Γ(z + 1) =

∫ ∞
0

tze−t dt = − tze−t
∣∣∞
t=0

+ z

∫ ∞
0

tz−1e−t dt = zΓ(z),

whence we obtain the fundamental functional equation

Γ(z + 1) = zΓ(z) , (6.11)

for all complex z where the integral is defined. Also

Γ(1) =

∫ ∞
0

e−t dt = − e−t
∣∣∞
0

= 1, (6.12)
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so if z = n, a natural number, then

Γ(n+ 1) = nΓ(n) = n(n− 1)Γ(n− 1) = · · · = n!. (6.13)

Hence, the gamma function generalizes the usual factorial function. Note

that

Γ(1/2) =
√
π, (6.14)

which is proved by changing variables from z to x2 in the defining integral

(6.9) and using (2.10):

Γ(1/2) =

∫ ∞
0

z−1/2e−z dz =

∫ ∞
0

x−1e−x
2

(2x) dx = 2

∫ ∞
0

e−x
2

dx

=

∫ ∞
−∞

e−x
2

dx =
√
π.

6.2 Basic Properties of Laplace Transforms

The most obvious property of Laplace transforms is that any two functions

agree for t > 0 have the same Laplace transform. This is sometimes used to

advantage in signal processing. Recall the definition of the step function:

θ(x) :=

1, if x ≥ 0,

0, if x < 0.
(6.15)

It follows that, for any function f(t),

L{f(t)} = L{θ(t)f(t)} (chopping property). (6.16)
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We also have, for a > 0,

L{f(t− a)θ(t− a)} =

∫ ∞
0

f(t− a)θ(t− a)e−st dt

=

∫ ∞
a

f(t− a)e−st dt

=

∫ ∞
0

f(x)e−s(x+a) dx,

or

L{f(t− a)θ(t− a)} = e−asL{f(t)} (a > 0) (shifting property).

(6.17)

Similarly, we have

L{e−atf(t)} = F (s+ a) (Re s > −a) (attenuation property). (6.18)

Example 12. Combining (6.3) and the attenuation theorem gives

F (s) = L{teat} =
1

(s− a)2
(Re s > a). (6.19)

One of the most important properties of the Laplace transform is the

relation between L{f(t)} and L{ḟ(t)}, where ḟ(t) = df/dt. Integration by

parts shows that

L{ḟ(t)} = sL{f(t)} − f(0) (derivative property). (6.20)
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Higher derivatives are obtained by simple substitution. For instance,

L{f̈(t)} = sL{ḟ(t)} − ḟ(0) = s2L{f(t)} − sf(0)− ḟ(0). (6.21)

6.3 Inverting Laplace Transforms

An example will illustrate the way in which Laplace transforms are typically

used. Suppose we want to find a solution to the differential equation

ḟ + f = e−t.

Multiply the equation by e−st and integrate from 0 to∞ (Laplace transform

the equation) to get

L{ḟ}+ L{f} = L{e−t}.

Define L{f(t)} = F (s) and use the derivative property together with the

inverse of (6.4) to get

sF (s)− f(0) + F (s) =
1

s+ 1
.

Essentially, we have reduced a differential equation to an algebraic one that

is much easier to solve. Indeed, we have

F (s) =
1

s+ 1
f(0) +

1

(s+ 1)2
. (6.22)

To solve the original equation we must invert F (s) to recover the original

function f(t). This is usually done by consulting a table of Laplace trans-

forms. In our case, the inverse of (6.22) can be computed from the inverses
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of (6.4) and (6.19):

f(t) = L−1{F (s)} = f(0)e−t + te−t. (6.23)

In general, to invert a Laplace transform we must employ something called a

Mellin inversion integral. But in simple cases we can avoid this integral

by means of some simple tricks. Two such tricks are particularly important.

6.3.1 Partial Fractions

Again, a simple example illustrates the point.

Example 13. Given F (s) = (s2 − 5s+ 6)−1, find f(t). We have

F (s) =
1

(s− 2)(s− 3)
=

1

s− 3
− 1

s− 2
,

so by the inverse of (6.4),

f(t) = L−1

{
1

s− 3

}
− L−1

{
1

s− 2

}
= e3t − e2t.

Many problems give rise to a Laplace transform that is the ratio of two

polynomials

F (s) =
P (s)

Q(s)
. (6.24)

Without loss of generality we may assume that the degree of P (s) is less

than the degree of Q(s), because if not, we can use polynomial division to

reduce the ratio to a polynomial plus a remainder term of this form. 7 In
7In any case, polynomials do not possess well-behaved inverse Laplace transforms.
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that case, we may use the technique of partial fractions to rewrite F (s) in a

form enabling one to essentially read off the inverse transform from a table.

There are several ways to do partial fraction expansions, but some are

more cumbersome than others. In general, a ratio of polynomials of the form

p(x)

q(x)
, (6.25)

where

q(x) = (x− a1)
n1(x− a2)

n2 · · · (x− ak)nk , (6.26)

and all the ai’s are distinct, and where the degree of p(x) is less than
∑
ni,

admits a partial fraction expansion of the form 8

A1,n1

(x− a1)n1
+

A1,n1−1

(x− a1)n1−1
+ · · ·+ A1,1

(x− a1)
+ · · ·

+
A2,n2

(x− a2)n2
+

A2,n2−1

(x− a2)n2−1
+ · · ·+ A2,1

(x− a2)
+ · · ·

+
Ak,nk

(x− ak)nk
+

Ak,nk−1

(x− ak)nk−1
+ · · ·+ Ak,1

(x− ak)
. (6.27)

There are now several different methods to find the Ai,j, which we present

as a series of examples.

Example 14. [Equating Like Powers of s] Combine the terms on the right

hand side into a polynomial, and equate coefficients. (This was the method

used in (13).) Write

1

(s− 2)(s− 3)
=

A

s− 2
+

B

s− 3
.

8Observe that this assumes that that one knows how to factor q(x), a problem for which
there is no general algorithm! One method is to guess a root, then find the remainder
term by polynomial division and repeat.
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Cross multiply by (s− 2)(s− 3) to get

1 = A(s− 3) +B(s− 2) = (A+B)s− (3A+ 2B).

Equate like powers of s on both sides to get

A+B = 0

3A+ 2B = −1.

Solve (either by substitution or linear algebra) to get A = −1 and B = 1, as

before.

Example 15. [Plugging in Values of s] This method is a minor variation on

the previous one. Consider the expansion

2s+ 6

(s− 3)2(s+ 1)
=

A

(s− 3)2
+

B

(s− 3)
+

C

s+ 1
.

Cross multiply by q(x) as before to get

2s+ 6 = A(s+ 1) +B(s− 3)(s+ 1) + C(s− 3)2.

Now plug in judicious values of s. For example, if we plug in s = 3, two

terms on the right disappear, and we immediately get 12 = 4A or A = 3.

Then try s = −1. This gives 4 = 16C or C = 1/4. It remains only to find

B, which we can do by plugging in the values of A and C we already found

and equating coefficients of s2 on both sides. This gives B = −1/4. Hence

2s+ 6

(s− 3)2(s+ 1)
=

3

(s− 3)2
− 1

4(s− 3)
+

1

4(s+ 1)
.
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Example 16. [Taking Derivatives] Suppose

q(x) = (x− a)nr(x), (6.28)

where r(x) is a polynomial with r(a) 6= 0. Then we have

p(x)

q(x)
=

αn
(x− a)n

+
αn−1

(x− a)n−1
+ · · ·+ α1

x− a
+ f(x), (6.29)

where f(x) means all the other terms in (6.27). (Notice that, whatever those

terms are, they do not blow up at x = a, because they involve fractions with

denominators that are finite at x = a.) To find αk, we can do the following.

First, multiply (6.29) through by (x− a)n. This gives

p(x)

r(x)
= αn + αn−1(x− a) + α1(x− a)n−1 + h(x), (6.30)

where h(x) = (x − a)nf(x). Now take k derivatives of both sides, where

0 ≤ k ≤ n− 1, and evaluate at x = a. As f(a) <∞, all those derivatives of

h(x) vanish at x = a, and what remains is k!αn−k. Therefore,

αn−k =
1

k!

dk

dxk
p(x)

r(x)

∣∣∣∣
x=a

(0 ≤ k ≤ n− 1) . (6.31)

To find the other terms f(x) in the expansion (6.29), just perform the same

trick at all the other roots of q(x).

For example, let’s use this method to compute

L−1

{
1 + s+ s2

s2(s− 1)2

}
.
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We have
1 + s+ s2

s2(s− 1)2
=
α2

s2
+
α1

s
+

β2

(s− 1)2
+

β1

s− 1
,

so applying (6.31) twice, first with r(s) = (s− 1)2 and then with r(s) = s2,

gives

α2 =
1

0!

1 + s+ s2

(s− 1)2

∣∣∣∣
s=0

= 1

α1 =
1

1!

d

ds

1 + s+ s2

(s− 1)2

∣∣∣∣
s=0

= 3

β2 =
1

0!

1 + s+ s2

s2

∣∣∣∣
s=1

= 3

β1 =
1

1!

d

ds

1 + s+ s2

s2

∣∣∣∣
s=1

= −3.

Thus,
1 + s+ s2

s2(s− 1)2
=

1

s2
+

3

s
+

3

(s− 1)2
− 3

s− 1
,

whereupon we obtain

L−1

{
1 + s+ s2

s2(s− 1)2

}
= t+ 3 + 3tet − 3et.

Example 17. [Recursion] A variant on the previous method that avoids

derivatives was provided by van der Waerden in his classic textbook on alge-

bra. It is recursive in nature and provably 9 fastest, which makes it particu-

larly well suited to automation, although for hand calculation the derivative

method is probably easiest. As in the derivative method, we want to expand
9H.J. Straight and R. Dowds, “An Alternate Method for Finding the Partial Fraction

Decomposition of a Rational Function”, Am. Math. Month. 91:6 (1984) 365-367.
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p(x)/q(x) where p(x) and q(x) are relatively prime, deg p(x) < deg q(x), and

q(x) = (x − a)nr(x), where r(a) 6= 0 and n ≥ 1. For any constant c we can

write
p(x)

q(x)
=

c

(x− a)n
+
p(x)− cr(x)

(x− a)nr(x)
. (6.32)

Now we choose c = p(a)/r(a). Then by the division algorithm for polynomi-

als

p(x)− cr(x) = (x− a)p1(x), (6.33)

for some polynomial p1(x) with deg p1(x) < deg p(x), because a is a root of

the left hand side. Thus we can write

p(x)

q(x)
=

c

(x− a)n
+

p1(x)

(x− a)n−1r(x)
. (6.34)

Now apply the same technique to the second term, and so on. Eventually we

obtain the entire partial fraction expansion.

Consider again

F (s) :=
1 + s+ s2

s2(s− 1)2
.

We begin by taking p(s) = 1 + s + s2, a = 0 and r(s) = (s − 1)2. Applying

the above method gives c = p(a)/r(a) = 1 and

p1(s) =
p(s)− r(s)

s
=

(1 + s+ s2)− (s2 − 2s+ 1)

s
= 3

so

F (s) =
1

s2
+

3

s(s− 1)2

For the next step we again take a = 0 and r(s) = (s − 1)2. Then c =
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p1(a)/r(a) = 3 and

p2(s) =
p1(s)− 3r(s)

s
=

3− 3(s2 − 2s+ 1)

s
= −3s+ 6

so

F (s) =
1

s2
+

3

s
+
−3s+ 6

(s− 1)2

Next take a = 1 and r(s) = 1. Then c = p2(1)/r(1) = 3 and

p3(s) =
p2(s)− 3r(s)

s− 1
=
−3s+ 3

s− 1
= −3

so

F (s) =
1

s2
+

3

s
+

3

(s− 1)2
+
−3

s− 1

as before. Pretty slick!

6.3.2 The Laplace Convolution Theorem

Just as for Fourier transforms, there is a convolution theorem for Laplace

transforms that sometimes comes in handy. Unfortunately, we need to in-

troduce a slightly different definition of convolution, appropriate for Laplace

transforms. To distinguish it from the one for Fourier transforms, we denote

it using the symbol ‘∗’. You must be very careful to keep track of which

convolution function you are using in any particular application!

Definition. The convolution of two functions f(t) and g(t) is

(f ∗ g)(t) =

∫ t

0

f(τ)g(t− τ) dτ. (6.35)

As before, although it is not obvious, convolution is symmetric: f ∗g = g∗f .
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Theorem 6.1 (Convolution Theorem for Laplace Tranforms). If f(t) and

g(t) are sufficiently well behaved, with L{f(t)} = F (s) and L{g(t)} = G(s),

then

L{(f ∗ g)(t)} = F (s)G(s). (6.36)

Hence,

L−1{F (s)G(s)} = (f ∗ g)(t). (6.37)

Proof. Omitted.

Example 18. Using the inverse of (6.4) and the definition (6.35), we have

L−1

{
1

(s− a)(s− b)

}
= eat ∗ ebt =

∫ t

0

eaτeb(t−τ) dτ

=
eat − ebt

a− b
(a 6= b). (6.38)

Example 19. From (6.10) and (6.14) we have

L{t−1/2} =
Γ(1/2)

s1/2
=

√
π

s
. (6.39)

Hence

L−1

{
1√

s(s− 1)

}
=

1√
πt
∗ et =

∫ t

0

1√
πτ
et−τ dτ =

et√
π

∫ t

0

e−τ√
τ
dτ

Change variables from τ to x =
√
τ to get

∫ t

0

e−τ√
τ
dτ = 2

∫ √τ
0

e−x
2

dx.
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Thus,

L−1

{
1√

s(s+ 1)

}
= et erf(

√
t), (6.40)

where

erf(u) =
2√
π

∫ u

0

e−x
2

dx (6.41)

is the error function of probability theory.

Example 20. Here is a slick application of the convolution theorem. The

beta function, defined for Re x > 1, Re y > 1 is

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt . (6.42)

Note that the integral is symmetric in x and y (change variables from t to

1− t). Let f(t) = ta−1 and g(t) = tb−1 with a > 0 and b > 0. Then, with the

substitution τ = ut we can write

(f∗g)(t) =

∫ t

0

τa−1(t−τ)b−1 dτ = ta+b−1

∫ 1

0

ua−1(1−u)b−1 du = ta+b−1B(a, b).

By the convolution theorem and (6.10),

L{ta+b−1B(a, b)} = L{ta−1 ∗ tb−1} = L{ta−1}L{tb−1} =
Γ(a)Γ(b)

sa+b
.

Using the inverse of (6.10) we obtain

ta+b−1B(a, b) = Γ(a)Γ(b)L−1

{
1

sa+b

}
= Γ(a)Γ(b)

ta+b−1

Γ(a+ b)
.
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Hence,

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
, (6.43)

a neat formula due to Euler.
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