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ABSTRACT

Let G be a graph, G its complement, L(G) its line graph, and

χ(G) its chromatic number. Then we have the following

Theorem Let G be a graph with n vertices. (i) If G is triangle

free, then

n − 4 ≤ χ
(
L(G)

)
≤ n − 2

(ii) If G is planar and every triangle bounds a disk, then

n − 3 ≤ χ
(
L(G)

)
≤ n − 2
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. Preliminaries

Let G be a graph, G its complement, L(G) its line graph, and χ(G) its
chromatic number. A nonedge of G is an edge of G. Two nonedges of G
are adjacent in G if they are adjacent as edges of G (i.e., their endpoints
intersect). They are nonadjacent if their endpoints are disjoint. The clique
complex ∆(G) of G is the simplicial complex on the vertex set of G whose
simplices are the cliques of G.

Following [4] we make the following definitions. For any set system S,
KG(S) denotes the Kneser graph of S, namely the graph whose vertices
are the elements of S and whose edges are pairs of nonintersecting sets.
When S =

(
[n]
k

)
, the set of all k subsets of an n set [n] := {1, 2, . . . , n},

we denote KG(S) by Kn:k. MIN(S) is the system of all sets in S that are
minimal with respect to inclusion. ‖K‖ means the geometric realization of
the simplicial complex K. J\K means the elements of J that are not in K.

The key result we need is Sarkaria’s colouring/embedding theorem,
which is a generalization of the Van Kampen-Flores theorem on the em-
beddability of simplices into R

d. We recall the theorem in the form which
we require:

. Theorem ([4,5,6,7,8]). Let K be a subcomplex of the n − 1 dimen-
sional simplex σn−1, and let S := MIN(σn−1\K). If

d ≤ n − χ(KG(S)) − 2

then for any continuous mapping f : ‖K‖ → R
d, the images of some two

disjoint faces of K intersect.

. The Theorem

We have the following

. Theorem. Let G be a graph with n vertices. (i) If G is triangle free,
then

n − 4 ≤ χ
(
L(G)

)
≤ n − 2

(ii) If G is planar and every triangle bounds a disk, then

n − 3 ≤ χ
(
L(G)

)
≤ n − 2

Remark. The upper bound of n−2 holds for any graph G, not just triangle
free graphs.
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Proof. A vertex of L(G) is a nonedge of G, and two vertices are adjacent in
L(G) if the corresponding nonedges of G are nonadjacent in G. Let G be
the empty graph on n vertices. Then L(G) = Kn:2. By the Lovász-Kneser
theorem [1,2,3,4] χ(Kn:2) = n − 2. Adding an edge to G removes a vertex
from L(G), which can only decrease its chromatic number. Hence, for any
graph G, χ

(
L(G)

)
≤ n − 2.

Now let S = MIN(σn−1\G), where G is viewed as a one-dimensional
simplicial complex. If G is triangle free, the inclusion minimal sets of S all
have size 2, and are precisely the edges of G. Hence KG(S) is the same
thing as L(G). Every graph is embeddable in R

3, so from Theorem 1.1 we
conclude that

n − χ
(
L(G)

)
− 2 < 3

or
χ

(
L(G)

)
≥ n − 4

This proves (i).

To prove the lower bound in (ii), suppose G is planar and every triangle
bounds a disk. Then the simplicial complex obtained by adjoining to G all
the faces bounded by triangles is homeomorphic to ‖∆(G)‖. In particular,
‖∆(G)‖ can be embedded in the plane. Now set S = MIN(σn−1\∆(G)).
The inclusion minimal nonfaces of the clique complex ∆(G) are precisely
the edges of G, so once again KG(S) is just L(G). As ‖∆(G)‖ embeds in
the plane,

n − χ
(
L(G)

)
− 2 < 2

so
χ

(
L(G)

)
≥ n − 3

. Observations

We end with a few observations.

• The upper bound on χ
(
L(G)

)
, namely n − 2, is equivalent to the

condition d ≥ 0 in Theorem 1.1.

• The triangle free condition in (i) is necessary. For example, let G be
Kn − e. Then G is a single edge, and L(G) and L(G) are both a single
point. As χ(point) = 1, χ

(
L(G)

)
< n − 4 for any n > 5.

2



• To illustrate the theorem, let G be K3,3, the complete bipartite graph
on two sets of three vertices. Then L(G) = G, and its chromatic
number is 2 = 6− 4. Also, both bounds can be achieved in the planar
case: G = C5, the 5-cycle, satisfies L(G) = G, and its chromatic
number is 3 = 5 − 2. On the other hand, if G is the 6-cycle plus an
edge connecting two vertices a distance 3 apart on the cycle, then one
can check that L(G) has chromatic number 3 = 6 − 3.

. Acknowledgements

I would like to thank Rick Wilson and the mathematics department
of the California Institute of Technology for their kind hospitality, and
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