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ABSTRACT

It is shown that the Hilbert series of the face ring of a clique complex (equiva-

lently, flag complex) of a graph G is, up to a factor, just a specialization of S
G

(x, y),

the subgraph polynomial of the complement of G. We also find a simple relation-

ship between the size of a minimum vertex cover of a graph G and its subgraph

polynomial. This yields a formula for the h-vector of the flag complex in terms of

those two invariants of G. Some computational issues are addressed and a recursive

formula for the Hilbert series is given based on an algorithm of Bayer and Stillman.
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. Introduction

Associated to every graph G are several natural simplicial complexes. Of these, one of the

most basic is the clique complex ∆(G), whose faces are the cliques of G. Many interesting

mathematical problems can be cast in terms of the number of faces of a clique complex

of a graph. In this paper we enumerate these face numbers in terms of the subgraph

polynomial S
G

(x, y) of G, the complement of G. As a corollary, we deduce an expression

for the minimum vertex cover of a graph in terms of its subgraph polynomial.

Our results follow from a computation of the Hilbert series of the face ring of the clique

complex. To carry out this computation we use a recent result of Gasharov, Peeva, and

Welker [1], which expresses the Betti numbers of the face ring in terms of the homology

of a certain lattice of monomials related to the complex (the so-called lcm-lattice). To

compute the Hilbert series only the Euler characteristics of lower intervals of the lcm-

lattice are needed, and these turn out to be directly related to a specialization of the

subgraph polynomial.

We begin by reviewing the basic ideas underlying our construction.

Flag Complexes

Let ∆ be a finite simplicial complex on the vertex set V = {1, . . . , n}. That is, ∆ is

a collection of subsets of V such that F ′ ∈ ∆ and F ⊆ F ′ implies F ∈ ∆, and {i} ∈ ∆

for all i. Elements of ∆ are called faces, and the dimension of a face is one less than its

cardinality. An r-dimensional face is called an r-face for short. The dimension of ∆ is the

dimension of a maximal face. Let fi(∆) be the number of i-faces of ∆. 1 If dim ∆ = d− 1

the d-tuple (f0, . . . , fd−1) is called the f-vector of ∆.

A flag complex is a simplicial complex with the property that every minimal nonface

has precisely two elements. 2 Flag complexes are intimately related to graphs. Let V be

a subset of the vertices of a graph G. V is a clique if every pair of elements of V is joined

by an edge of G, and V is independent if no pair of elements of V is joined by an edge of

G. The collection ∆(G) of all the cliques of a graph G forms a simplicial complex, called

the clique complex of G, by letting the r faces of ∆(G) be the cliques of size r + 1. It is

easy to see that every flag complex is the clique complex of some graph. Dually, we could

1 Note that, as dim ∅ = −1, f−1 = 1 unless ∆ is itself empty, in which case fi = 0 for all i.
2 The terminology is evidently due to Tits ([2], p.2). For a survey of some results related to

flag complexes, see ([3], pp. 100ff).
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also consider ∆(G), the independent set complex (or stable set complex) of G, which is the

simplicial complex formed by by letting the r faces of ∆(G) be the independent sets of G

of size r + 1. Clearly, ∆(G) = ∆(G), where G is the complement of G. Hence every flag

complex is also the independent set complex of some graph.

. Example. For any poset P , its order complex ∆(P ) (the simplicial complex whose

faces are the chains (totally ordered subsets) of P ) is a flag complex. To see this, let GP

be the comparability graph of P , namely the graph on the vertices of P whose edges are

all pairs of comparable vertices. Then ∆(P ) = ∆(GP ).

. Example. Let ∆′ be any simplicial complex, and let P (∆′) be its face poset, namely

the set of faces of ∆′ partially ordered by inclusion. The order complex ∆(P (∆′)) is just

the barycentric subdivision of ∆′. Hence the barycentric subdivision of any simplicial

complex is a flag complex.

Many important problems reduce to questions about the f−vector of flag complexes.

. Example. Let G be an f0 vertex simple graph whose clique complex ∆(G) has

f−vector f = (f0, f1, . . . , fr−1). Then Turán’s Theorem implies, for example, that f1 ≤
(1 − 1/r)(f0)2/2. Finding other inequalities on the components of the f−vector is of

considerable interest to graph theorists.

. Example. (For further details about this example, see ([3], pp. 100ff).) Let ∆ be a

non-acyclic Gorenstein flag complex of dimension 2m − 1 with f−vector (f0, . . . , f2m−1).

Then Charney and Davis conjecture 3 ([4]) that

(−1)m
2m∑
i=0

fi−1

(
−1

2

)i

≥ 0

The Face Ring

A particularly effective way to investigate the f -vector of a simplicial complex is to

study the face ring (or Stanley-Reisner ring) k[∆] of the complex ∆ ([3],[5],[6]). Let

R = k[x1, . . . , xn] be the polynomial ring in n variables over a field k. To every collection

F = {i1, i2, . . . , ir} of r distinct vertices of a simplicial complex ∆ we associate a monomial

xF ∈ R, where

xF := xi1xi2 . . . xir (1.1)

3 This conjecture is a piecewise-linear analogue of the Hopf conjecture that the Euler char-
acteristic of a closed Riemannian 2m−dimensional manifold with non-positive sectional
curvature alternates in sign with m.
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The face ring of ∆ is defined to be the quotient ring R/I∆, where I∆ is the ideal generated

by all monomials xF such that F is not a face of ∆.

The importance of the face ring lies in the fact that one may read off certain enumer-

ative invariants of the simplicial complex ∆ from certain algebraic properties of the face

ring k[∆]. For example, one can show ([3], Theorem 1.3, p. 53; [6], Theorem 5.1.4, p. 202)

that dim k[∆] = 1 + dim ∆, where dim k[∆] denotes the Krull dimension of the ring. To

describe these invariants more fully, we need to recall some algebraic facts.

The Hilbert Series of a Graded Module

Because R is a polynomial ring over a field, it has additional structure. For α ∈ N
n we

define Rα = {cxα|c ∈ k}, where x = (x1, . . . , xn), α = (α1, . . . , αn) and xα is shorthand for

xα1
1 . . . xαn

n . Then R0 = k, R = ⊕α∈N
nRα (vector space direct sum), and RαRβ ⊆ Rα+β .

Hence R is a finitely generated N
n-graded k-algebra. Elements of Rα are said to be

homogeneous of multidegree α. We say that elements of R are graded by multidegree or

finely graded, and we refer to the N
n grading as the fine grading.

A Z
m-graded R-module M admits a direct sum decomposition M = ⊕α∈Z

nMα com-

patible with the grading: RαMβ ⊆ Mα+β . In particular, each homogeneous component

Mα is a module over R0 = k ⊂ R and is thus a k vector space. If M is finitely generated

(the only case with which we shall be concerned) the k-dimension of each Mα is finite.

This allows us to define the Hilbert function of M , which keeps track of the dimension of

each homogeneous component:

H(M, α) := dimkMα (1.2)

The generating function for the Hilbert function is the Hilbert series of M :

HM (t) =
∑

α∈Z
n

H(M, α)tα (1.3)

where t = (t1, . . . , tn), α = (α1, . . . , αn) and tα is shorthand for tα1
1 . . . tαn

n .

As I∆ inherits the grading of R, the face ring k[∆] does as well: (R/I∆)α = Rα/I∆α.

To compute the Hilbert series of k[∆] (as a multigraded R module) we proceed as follows.

The support of a monomial xα (equivalently, the support of α) is {i|αi 	= 0}. The nonzero

monomials xα in k[∆] are just the ones whose support is a face of ∆. So each homogeneous

component k[∆]α is either a zero or one dimensional vector space depending on whether
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or not the support of α lies in ∆. Hence

Hk[∆](t) =
∑

α∈N
n

supp α∈∆

tα

=
∑
F∈∆

∑
α∈N

n

supp α=F

tα

=
∑
F∈∆

∏
i∈F

ti
1 − ti

(1.4)

To connect the properties of the Hilbert series of k[∆] with the properties of ∆ we pass

to a coarser grading of the face ring. Define the Z-graded (coarse graded) component k[∆]i
by

k[∆]i =
⊕

α∈Z
n
, |α|=i

k[∆]α (1.5)

where |α| = α1 + . . . + αn. It follows that the Hilbert series of k[∆] with respect to the

coarse grading may be obtained from (1.4) by replacing each ti by t. This gives us the

following

. Theorem ([3], Theorem 1.4, p. 54; [6], Theorem 5.1.7, p. 204). Let ∆ be a simplicial

complex with f-vector (f0, . . . , fd−1). Then

Hk[∆](t) =
d−1∑
i=−1

fit
i+1

(1 − t)i+1

It is known ([6], Corollary 4.1.8, p. 149) that the Hilbert series of any finitely generated

Z-graded R-module M = ⊕iMi of dimension d can be written in the form

HM (t) =
QM (t)
(1 − t)d

(1.6)

where QM (t) =
∑

hit
i is a Laurent polynomial with integer coefficients such that min{i|hi 	=

0} = min{i|Mi 	= 0}. As the face ring k[∆] (with its standard grading) only has homoge-

neous components of non-negative degree, Qk[∆](t) is an ordinary polynomial, often called

the h-polynomial of ∆. 4 Comparing Theorem 1.5 with Equation (1.6) we get

∑
hit

i =
d∑

i=0
fi−1t

i(1 − t)d−i (1.7)

4 This is not to be confused with the Hilbert polynomial, which is the polynomial function
of u which agrees with H(M, u) for large u when M is Z-graded.
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whence it follows that hi = 0 for i > d. The d + 1-tuple h(∆) := (h0, . . . , hd) is called the

h-vector of ∆. It is clear that knowing the h-vector is equivalent to knowing the f -vector.

Explicitly we have

hj =
j∑

i=0
(−1)j−i

(
d − i

j − i

)
fi−1 and fj−1 =

j∑
i=0

(
d − i

j − i

)
hi (1.8)

Hilbert Series and Free Resolutions

We can compute the Hilbert series of a graded module from its finite free resolution: 5

. Theorem ([6], Lemma 4.1.13, p. 153). Let M be a finite graded R-module of finite

projective dimension, and let

0 −→
⊕

j

R(−j)βpj −→ · · · −→
⊕

j

R(−j)β0j −→ M −→ 0

be a graded free resolution of M . Then

HM (t) = SM (t)HR(t)

where SM (t) =
∑

ij(−1)iβijt
j. In particular, if R = k[x1, . . . , xn] is the polynomial ring

over the field k, then

HM (t) =
SM (t)

(1 − t)n

When the resolution is minimal the numbers βij are called the (j-graded or coarsely

graded) Betti numbers of the module M , and can be expressed as

βij(M) = dimkTorRi,j(M, k) (1.9)

One important fact which we will use in the sequel is that one may read off the codimension

of the module M from the Hilbert series ([6], Corollary 4.1.14, p. 153):

n − d = inf{i : diSM (t)/dti|t=1 	= 0} (1.10)

5 Recall that if M = ⊕iMi is a graded R-module with the standard grading (deg xi =
1) the notation M(j), j ∈ Z means the same graded module with the degrees shifted:
M(j) = ⊕i[M(j)]i where [M(j)]i = Mi+j . The shifted grading ensures that the connecting
homomorphisms are degree preserving.
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. The Betti Numbers of a Monomial Ideal

In Section 4 we will show that the polynomial SM (t) appearing in Theorem 1.6 has a very

natural interpretation in terms of the graph G when we take M = k[∆(G)]. The key tool

we shall use is a result of Gasharov, Peeva, and Welker ([1]; see also [7] for further details

and applications) expressing the multigraded Betti numbers of a monomial ideal in terms

of the homology of a certain lattice associated to the ideal.

Let R = k[x1, . . . , xn] be the polynomial ring over a field k with its N
n grading as

above and let I be an ideal generated by a set of monomials m1, . . . , ms. Denote by LI the

lattice whose elements are the least common multiples of subsets of the generating set of I

ordered by divisibility. Thus the atoms of LI are the monomials m1, . . . , ms, the minimal

element of LI is 1 (corresponding to the least common multiple of the empty set), and the

maximal element is lcm(m1, . . . , ms). LI is called the lcm lattice of the ideal I.

The main result which we shall need is

. Theorem ([1], Theorem 2.1). For i ≥ 1 and xα ∈ LI we have

βi,α(R/I) = dim H̃i−2
(
(0, xα)LI

; k
)

Here H̃j(X; k) is the jth reduced simplicial homology group of the space X over k, and

(0, xα) denotes the (open) lower interval between the minimal element and xα in LI . (The

topology of a poset is the topology of its order complex.) The numbers βi,α(R/I) are the

finely graded Betti numbers of a minimal finite free resolution of R/I. As noted in [1],

Taylor’s resolution ([8], Exercise 17.11, p. 439) shows that the finely graded Betti numbers

vanish if the monomial xα 	∈ LI . Also, as the total degree of a monomial is just the sum

of the entries of its multidegree (cf. (1.5)) we have

βij =
∑

α∈Z
n

|α|=j

βi,α (2.1)

. The Subgraph Polynomial

To every graph G we may associate its subgraph polynomial SG(x, y) defined as follows

SG(x, y) :=
∑

T⊆EG

x|T |y|V T | (3.1)
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where EG is the edge set of G, |T | is the cardinality of the set T , and V T is the subset of

vertices of G incident with the edges in T . Alternatively, we may write

SG(x, y) =
∑
ij

bijx
iyj (3.2)

where bij is the number of subgraphs of G with i edges and j vertices. 6

Variants of this polynomial have been considered by Farrell [9] and Borzacchini [10] and

probably others, although considering its naturality there are suprisingly few references to

it in the literature. One possible reason for this dearth of references is that the subgraph

polynomial is not a generalized Tutte-Grothendieck invariant (in the sense of Brylawski

[11]; see below). Hence it is not simply a specialization of the Tutte polynomial of the

graph. 7

The subgraph polynomial does satisfy a simple recursion formula based on deletion

and contraction of edges, which we record here. Given a graph G and an edge e ∈ EG we

let G − e denote the graph G with e removed (“the deletion of e”) and we let G/e denote

the graph G with e removed and the endpoints of e identified (“the contraction of e”).

If v is a vertex of G we define G − v to be the graph G with the vertex v and all edges

incident with v removed. (We call the set of edges incident with a vertex v the spine of v

and denote it by sp(v).) Then we have the following

. Theorem (cf. [12], Theorem 2, p. 591). For any graph G and every edge e ∈ EG

we have

SG(x, y) = SG−e(x, y) + xySG/e(x, y) + xy(y − 1)S(G/e)−w(x, y)

if e is not a loop, and

SG(x, y) = (1 + x)SG−e(x, y) + x(y − 1)S(G/e)−w(x, y)

if e is a loop. Here w is the vertex in G/e to which the endpoints of e have been identified.

Proof. Either e is contained in a given subset T or not. Hence we may write

SG(x, y) =
∑

e	∈T⊆G

x|T |y|V T | +
∑

e∈T⊆G

x|T |y|V T |

6 As is clear from (3.1), here and throughout the paper the word ‘subgraph’ means the graph
whose vertices are V T and whose edges are T , where T is some subset of the edges of G.
We could call them edge induced subgraphs, but this is too cumbersome.

7 One can, however, derive the Tutte polynomial from a generalization of the subgraph
polynomial (see [9] and [12]).
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The first sum is clearly SG−e(x, y). We further divide the second sum into two subcases,

depending on T . Let u and v be the endpoints of e in G, so that u and v are identified

to w in G/e. There is an obvious one-to-one correspondence between subgraphs T of G

containing e and subgraphs T ′ of G/e, but their weights are different depending on how

T − e meets u and v.

Case (1): T − e meets u or v (or both). T ′ contains one fewer vertex and one fewer

edge than T , so if we multiply the weight of T ′ by xy then it equals the weight of T in G.

Note that in this case T ′ meets w, so it contains an edge of sp(w).

Case (2): T − e meets neither u nor v. Then T ′ contains one fewer edge but two fewer

vertices than T , so we must multiply the weight of T ′ by xy2 to make it equal the weight

of T in G. In this case T ′ does not meet w, so it does not contain any edge of sp(w).

Hence

∑
e∈T⊆G

(T−e)∩{u,v}	=∅

x|T |y|V T | = xy
∑

T ′⊆G/e
T ′ ∩ sp(w)	=∅

x|T
′|y|V T ′|

= xy
∑

T ′⊆G/e

x|T
′|y|V T ′| − xy

∑
T ′⊆G/e

T ′ ∩ sp(w)=∅

x|T
′|y|V T ′|

and ∑
e∈T⊆G

(T−e)∩{u,v}=∅

x|T |y|V T | = xy2
∑

T ′⊆G/e
T ′ ∩ sp(w)=∅

x|T
′|y|V T ′|

Adding the two expressions gives the desired result. The formula in the case that e is a

loop follows analogously.

We also record the following easy fact:

. Proposition. The subgraph polynomial satisfies

SG�H(x, y) = SG(x, y)SH(x, y)

where � is disjoint union.

Proof. Every subset T of edges of G�H is of the form (T ′, T ′′) where T ′ ⊆ G and T ′′ ⊆ H.

The weight of T in SG�H is the product of the weights of T ′ and T ′′.
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. The Hilbert Series of the Face Ring of a Flag Complex

The main result of this work is

. Theorem. Let G be a graph on n vertices and let ∆(G) be its clique complex. Then

the Hilbert series of k[∆(G)] is given by

Hk[∆(G)](t) =
S

G
(−1, t)

(1 − t)n

where S
G

(x, y) is the subgraph polynomial of G.

Proof. 8 Define a finely graded analogue of the polynomial SM (t) appearing in Theo-

rem 1.6, as follows:

S̃k[∆(G)](t) :=
∑
i,α

(−1)iβi,α(k[∆(G)])tα (4.1)

where, as before, t = (t1, . . . , tn), α = (α1, . . . , αn), and tα = tα1
1 · · · tαn

n . Then from

Theorem 2.1 we have (after a suitable shift of dummy indices)

S̃k[∆(G)](t) =
∑
α

χ̃((0, xα))tα (4.2)

where

χ̃(X) =
∑

i

(−1)idim H̃i(X) (4.3)

is the reduced Euler characteristic of X. Observe that equation (2.1) and Theorem 1.6 im-

ply

Sk[∆(G)](t) = S̃k[∆(G)](t, t, . . . , t) (4.4)

So, to compute Sk[∆(G)](t) we must compute the (reduced) Euler characteristics of the

principal order ideals in the lcm-lattice corresponding to the ideal I∆(G).

To this end, label the vertices V G of G from 1 to n. To every edge of the form e = {i, j}
there is a unique monomial of degree 2, namely xe = xixj . We call xe for some e an edge

monomial of G.

Now, the minimal nonfaces of ∆(G) are precisely the edges of G. Hence the monomial

ideal I := I∆(G) defining the face ring k[∆(G)] is generated by the edge monomials of G.

8 When this article was in preprint form several people pointed out to the author that this
result may also be obtained by a direct inclusion-exclusion argument without recourse to
the results of [1].
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In particular, the lcm lattice L := LĪ has the edge monomials of G as its atoms. The key

point is that the least common multiple of a set of edge monomials corresponding to a

subset T of edges of G is just the squarefree monomial whose support is V T , the vertices

of T . Conversely, associated to every monomial xα ∈ L there is a unique subgraph Gα of

G, namely the induced subgraph on the support of α.

From Philip Hall’s Theorem ([13], Proposition 3.8.6, p. 120) we have

χ̃((0, xα)) = µL(0, xα) (4.5)

the Möbius function of the closed interval [0, xα] in L. As [0, xα] is a sublattice of the

lattice L, Rota’s Cross Cut Theorem ([13], Corollary 3.9.4, p.125; [14], Theorem 4.42, p.

175) gives

µL(0, xα) =
∑
k

(−1)kN(α)k (4.6)

where N(α)k is the number of k subsets of the atoms of L whose join is xα. By the

correspondence above between subgraphs of G and elements of L, a set of edge monomials

corresponding to some subset T of edges has join xα precisely when V T coincides with the

support of α. In graph theoretical terminology, this occurs when T is a spanning subgraph

of Gα. Hence N(α)k counts the number of spanning subgraphs of Gα with k edges.

Putting all this together with (4.2) gives

S̃k[∆(G)](t) =
∑
k,α

(−1)kN(α)ktα (4.7)

Finally, setting ti = t for all i yields (from (4.4) and the fact that each spanning subgraph

of Gα occurs precisely once in G)

Sk[∆(G)](t) =
∑
k,j

(−1)kNktj (4.8)

where Nk is the number of subgraphs of G with k edges and |α| = j vertices. The result

follows by comparing (4.8) and (3.2).

. Corollary. Let G be a graph on n vertices and let ∆(G) be its independent set

complex. Then the Hilbert series of k[∆(G)] is given by

H
k[∆(G)](t) =

SG(−1, t)
(1 − t)n

where SG(x, y) is the subgraph polynomial of G.

Proof. ∆(G) = ∆(G).
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Recall that a vertex cover of a graph G is a set V of vertices of G such that every edge

is incident with at least one element of V .

. Corollary. Let β(G) denote the number of vertices in a minimum vertex cover of

G. Then

β(G) = min{i : diSG(−1, t)/dti |t=1 	= 0}

First Proof. Let R = k[x1, . . . , xn] be the polynomial ring over a field k. Let I ⊆ R be an

ideal and denote by Z(I) the affine variety (zero set) of I in kn. The codimension of the

ideal I is precisely the codimension of Z(I) as a variety. When I is a monomial ideal Z(I)

is just a union of coordinate subspaces, and its dimension is just that of the maximal such

subspace. This yields a simple recipe for computing the dimension. Let I = 〈m1, . . . , ms〉
be the ideal generated by the monomials {m1, . . . , ms}. Let Mj be the support of mj for

1 ≤ j ≤ s, let σ be any subset of {1, . . . , n} that has nonempty intersection with every

Mj , 1 ≤ j ≤ s, and let Σ be the set of all such σ. Then by Proposition 3 of ([15], p. 431)

the codimension of I is min{|σ| : σ ∈ Σ}.

Now, let G be a graph, ∆(G) its clique complex, and k[∆(G)] = R/I∆(G) its face ring.

As before, I∆(G) is generated by all monomials of degree 2 corresponding to edges of G.

In this case the set Σ defined above corresponding to the ideal I∆(G) is precisely the set of

vertex covers of G. Hence the codimension of I∆(G) is just β(G). The result now follows

from (1.10) and Theorem 4.1.

Second Proof. Let α(G) denote the size of a maximum independent set in G. The comple-

ment of a minimum vertex cover of G is a maximum independent set of G, so α(G)+β(G) =

|V G|. But dim k[∆(G)] = 1+dim ∆(G) = α(G), so the codimension of I∆(G) is just β(G).

The result now follows from (1.10) and Corollary 4.2.

. Corollary. Let G be a graph and ∆(G) its clique complex. Then the h-polynomial

of ∆(G) is given by

Qk[∆(G)](t) =
∑

hit
i =

S
G

(−1, t)

(1 − t)β(G)

Proof. Let d be the dimension of I∆(G). Then from the proof of Corollary 4.3, β(G) =

codim I∆(G) = n− d. The result now follows by equating the Hilbert series expressions in

(1.6) and Theorem 4.1.
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. Computational Considerations

Corollary 4.3 shows that computing the Hilbert series of the face ring of a flag complex

(equivalently, the appropriately specialized subgraph polynomial) is a hard in a technical

sense, as the problem of computing the minimum vertex cover of a graph is NP-complete

([16], p. 234 and Lemma 3.1.13, p. 104; see also [17], Proposition 2.9). Nevertheless, it is

possible to improve upon the naive algorithm for SG(−1, t) derivable from Theorem 3.1 by

appealing to a result of Bayer and Stillman [17]. We now recall their result, following

Eisenbud ([8], p. 325).

Let I ⊆ R be the ideal whose Hilbert series we wish to compute, and choose a minimal

generator m ∈ I of degree r. Set I = (I ′, m) where I ′ = (m1, . . . , ms) is a monomial ideal

generated by fewer monomials than I. We can construct an exact sequence of degree zero

maps between graded modules

R(−r)
ϕ−→ R/I ′ −→ R/I −→ 0 (5.1)

where R(−r) is the free module with generator in degree r and ϕ sends the generator of

R(−r) to the class of m in R/I ′. The kernel of ϕ is the set of all elements f in R that

satisfy fm ∈ I ′, which is to say, the kernel of ϕ is the colon ideal J := (I ′ : m), shifted in

degree to be a submodule of R(−r). One can show that

J =
(

m1
gcd(m1, m)

, . . . ,
ms

gcd(ms, m)

)
(5.2)

so that J has fewer monomials than I.

From (5.1) we get the short exact sequence of graded modules

0 −→ (R/J)(−r) −→ R/I ′ −→ R/I −→ 0 (5.3)

which gives, for each integer j, a short exact sequence of vector spaces

0 −→ (R/J)j−r −→ (R/I ′)j −→ (R/I)j −→ 0 (5.4)

As the Hilbert series is easily seen to be additive on exact sequences we conclude that

HR/I(t) = HR/I ′(t) − trHR/J (t) (5.5)

We may cast the recursion (5.5) directly in terms of graphs. To avoid some notational

confusion between G and its complement, we will temporarily use Γ to denote an arbitrary

graph. Next, we define

HΓ(t) := H
k[∆(Γ)](t) = H

k[∆(Γ)](t) = HR/I(t) (5.6)
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where I is the edge ideal of Γ consisting of all edge monomials of Γ. Let e be an edge of

Γ and set e = {u, v}. Let N(u) be the neighborhood of u, namely the set of vertices in Γ

adjacent to u, and set N(u, v) = N(u) ∪ N(v). (Observe that N(u, v) includes u and v.)

The graph Γ − e is Γ with e removed, while Γ − N(u, v) means Γ with both the vertices

N(u, v) and all the edges incident with them removed.

We then have 9

. Theorem. For any simple graph Γ

HΓ(t) = HΓ−e(t) −
(

t

1 − t

)2
HΓ−N(u,v)(t) (5.7)

Proof. Let m = xe, the edge monomial of e. The origin of the first term on the right

hand side of (5.7) is clear, as the monomial ideal I ′ in (5.5) consists of all the edges of

Γ except e. The second term in (5.7) derives from the colon ideal J . Examining (5.2)

we see that J consists of degree one monomials corresponding to the vertices in N(u, v)

(except u and v) and degree two monomials corresponding to edges not incident with

N(u, v). Let J ′ be the ideal generated by J and the monomials xu and xv. Using (5.5)

gives HR/J ′(t) = (1 − t)2HR/J (t). But HR/J ′(t) = HΓ−N(u,v)(t).

. Example. Let Γ be the graph on 8 vertices with the following edges: {1, 3}, {1, 4},
{5, 7}, {5, 8}, {1, 5}, {2, 6}, {3, 7}, and {4, 8}. Then

I = (x1x3, x1x4, x5x7, x5x8, x1x5, x2x6, x3x7, x4x8) (5.8)

If we pick, say, m = x1x3, then

I ′ = (x1x4, x5x7, x5x8, x1x5, x2x6, x3x7, x4x8) (5.9)

which clearly has fewer generators than I. Also, from (5.2) we have

J = (x4, x5x7, x5x8, x5, x2x6, x7, x4x8) = (x4, x5, x7, x2x6) (5.10)

9 A recursion similar to the one in Theorem 5.1 was found by Watkins in his unpublished
master’s thesis ([18], Theorem 5.1; see also [19], p. 21). (I am grateful to Wolmer Vas-
concelos for providing me with a copy of Watkins’ thesis.) Written in our notation it
reads

HΓ(t) = HΓ−u(t) +
(

t

1 − t

)
HΓ−u−N(u)(t)

where u is an arbitrary vertex of Γ, N(u) is its neighborhood, and, as above, removing a
vertex also entails removing its incident edges.
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which consists of degree one monomials corresponding to vertices of Γ incident with the

edge {1, 3} and degree two monomials corresponding to edges of Γ not incident with vertices

1 and 3.

Proceeding in this way we may compute the Hilbert series of k[∆(Γ)], which is 10

H
k[∆(Γ)](t) =

1 − 8t2 + 10t3 + 4t4 − 12t5 + 4t6 + 2t7 − t8

(1 − t)8

We also find the codimension of the corresponding ideal: codimI∆(Γ) = 4.

To compare this result to Corollary 4.2 we must compute the subgraph polynomial of

Γ, which we do separately for each connected component:

SΓ−{2,6}(x, y) = 1 + 7xy2 + 10x2y3 + 11x2y4 + 16x3y4 + 16x3y5 + 3x3y6

+ 2x4y4 + 18x4y5 + 15x4y6 + 4x5y5 + 17x5y6 + 7x6y6 + x7y6

and

S{2,6}(x, y) = 1 + xy2

Putting these results together using Proposition 3.2 we get
SΓ = SΓ−{2,6}(x, y)S{2,6}(x, y)

= 1 + 8xy2 + 10x2y3 + 18x2y4 + 16x3y4 + 26x3y5 + 2x4y4 + 14x3y6 + 18x4y5

+ 31x4y6 + 4x5y5 + 16x4y7 + 19x5y6 + 3x4y8 + 18x5y7 + 7x6y6

+ 15x5y8 + 4x6y7 + x7y6 + 17x6y8 + 7x7y8 + x8y8

Specializing gives

SΓ(−1, t) = 1 − 8t2 + 10t3 + 4t4 − 12t5 + 4t6 + 2t7 − t8

which is precisely the numerator of the Hilbert series. Dividing by (1 − t)4 yields the

h−polynomial

Q
k[∆(Γ)](t) = 1 + 4t + 2t2 − 2t3 − t4

and from the h−polynomial we arrive at the f−polynomial of ∆(Γ) using (1.8):∑
i

fit
i = 1 + 8t + 20t2 + 18t3 + 4t4
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