Physics in the classroom

Lecture 2

Distance

Speed
 Acceleration

Physics 304

Red

Physics 304

Blue

Physics 304

Blue/Red Race

Strip Chart

Strip Chart

Physics 304

Strip Chart

Time (s)
Physics 304

Strip Chart

Time (s)
Physics 304

Strip Chart

Graph

Physics 304

Graph of race

Physics 304

Slope $=$ rise over run rise $=$ distance in meters
run $=$ time in seconds
slope $=$ distance divided by time
slope $=$ speed $!$
Units: meters divided by seconds
Units: meters per second m/s

Lets do the numbers for the red one slope $=100$ meters divided by 10 seconds slope $=10$ meters per second slope $=$ speed $=10 \mathrm{~m} / \mathrm{s}$

Lets do the numbers for the blue one slope $=50$ meters divided by 10 seconds slope $=5$ meters per second slope $=$ speed $=5 \mathrm{~m} / \mathrm{s}$

Fancy Speedometer

Speed Graph

Physics 304

What does the race look like on this kind of graph?

Speed Graph of race

Physics 304

Speed Graph of race

Now what does the area under iser the line tell us?
The area under the blue curve is just a square $5 \mathrm{~m} / \mathrm{s}$ high and 10 seconds wide. Multiplying the height by the width we get $5 \times 10=50$ for the numeric part and meters per second times seconds for the units. The seconds cancel giving simply meters, so our answer is 50 meters, which is what we read from the distance graph!
A similar calculation for the red line gives 100 meters for the red line, which is again the same as what we read from the distance graph!

Now what does the area under this line tell us?
The area of a triangle is $1 / 2$ height times base.
Height - meters per second
base - seconds
area units - meters per second time seconds the seconds cancel leaving meters again
The area under the curve is the distance traveled.

Speed Graph

Lets do the math.
$1 / 2$ height times the base.
$1 / 2(10 \mathrm{~m} / \mathrm{s}) \times(5 \mathrm{~s})$
$=25 \mathrm{~m}$

Now lets take a look at the slope in this kind of graph

Speed Graph

Slope $=$ rise over run
What are the units of this slope?
Rise - speed - meters per second
run - time - seconds
slope - meters per second per second acceleration - $\mathrm{m} / \mathrm{s}^{2}$

Speed Graph

Lets do the math: acceleration $=$ slope $=$ rise $/$ run
$=(10 \mathrm{~m} / \mathrm{s})$ 5 s
$=2 \mathrm{~m} / \mathrm{s}^{2}$

Acceleration Graph

Physics 304

Recall that the area under the line is equal to the distance.
Distance $=1 / 2$ (speed) $\mathrm{x}($ time $)$
or in shorthand $\mathrm{d}=1 / 2 \mathrm{vt}$ where v is for velocity or speed.
Also recall that acceleration $=$ speed divided by time, or
$\mathrm{a}=\mathrm{v} / \mathrm{t}$
this can be rearranged algebraically to give $\mathrm{v}=\mathrm{at}$
Substituting this back into our first equation, we have, $d=1 / 2(a t) t=1 / 2 a t^{2}$
Finally this can be rearranged to give $a=(2 d) / t^{2}$, which is the equation that appears in your lab write-up.

