The exam will cover Chapters 22-25 from the text. You will be allowed one 8.5 x 11 inch sheet of notes to refer to during the exam. (You may write on both sides). You will also need a calculator for the exam. You will have the entire class period to complete the exam, (Date: Mon., Feb. 16, 4:00 PM)

The following topics may be helpful in guiding you as you study for the exam:

Chapter 22 Electric Charge

Coulomb’s Law: point(like) charges
- Like charges repel, opposite charges attract
- \(F = \frac{k|q_1 q_2|}{r^2} \)
- The force acts along the line between the two charges
- When there are more than two charges, the electric force is equal to the vector sum of the electric forces from each of the other particles

Charge is Quantized
- Charge comes in discreet units, \(e = 1.60 \times 10^{-19} \text{ C} \)
- Electron = -e, Proton = +e, Neutron = 0

Charge is conserved
- The net charge in closed system never changes

Chapter 23 Electric Fields

Electric Fields
- Electric force on a test charge \(q_o \)
- \(F = q_o E \)

Point Source Charge, Q
- \(E = \frac{k|Q|}{r^2} \)
- Points away from positive charge and toward negative charge

Multiple Charges
- \(\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \ldots \)

Chapter 24 Gauss’ Law

Electric Flux, \(\Phi \)
- \(d\Phi = \vec{E} \cdot d\vec{A} \)
- \(d\vec{A} \) is a small piece of the surface the direction is perpendicular to the surface
- Total flux through a closed surface: \(\Phi = \oint \vec{E} \cdot d\vec{A} \)

Gauss’ Law
- \(\oint \vec{E} \cdot d\vec{A} = \Phi = \frac{Q_{\text{enc}}}{\epsilon_0} \)

Symmetries
- Spherical \(E = k|Q_{\text{enc}}|/r^2 \), Direction is radial, away from positive \(Q_{\text{enc}} \), toward negative \(Q_{\text{enc}} \)
- Cylindrical (infinite line) \(E = 2k|\lambda|/r \), Direction is along the shortest distance to the line
- \(\lambda \) = charge per unit length of the line of charge
- Single Planar (infinite sheet) \(E = |\sigma|/2\epsilon_0 \), Direction is perpendicular to the surface
- \(\sigma \) = charge per unit area of the sheet of charge

Conductors
- \(E = 0 \) inside an isolated (no current) conductor
- All excess charge is distributed over the outside surface of the conductor.
- The net charge inside a cavity combined with the charge on the wall of the cavity is 0
Chapter 25 Electric potential (Unit = Volt = Joule/Coulomb)

Electric Potential Energy, \(\Delta U_e = -\int F_e \cdot d\vec{s} \)

Electric Potential
\[\Delta V = \Delta U_e/q_o = -\int \vec{E} \cdot d\vec{s} \] = change in electrical potential energy/unit test charge

Coulomb Potential of a point charge Q (or outside a spherically symmetric distribution):
\[V = kQ/r \quad \text{as } r \to \infty , \]

Superposition:
\[V = kQ/r_1 + kQ/r_2 + kQ/r_3 + \ldots \]

Uniform Electric Fields
\[\Delta V = -\vec{E} \cdot \Delta \vec{r} = -\vec{E} |\Delta \vec{r}| \cos \theta \]
where \(\Delta \vec{r} \) is the displacement, and \(\theta \) is the angle between the displacement and the electric field

Equipotential Surface
Surfaces along which the potential is constant, \(\Delta V = 0 \)
Electric field lines are everywhere perpendicular to Equipotential surfaces.

Isolated, static conductors
The electric potential inside an isolated, static (no current) conductor is everywhere the same.

Motion of a test charge in an electric potential
Electrical potential energy of a test charge, \(q_o \):
\[U_e = q_o V \]
Conservation of energy
\[\Delta K = -\Delta U_e \quad \Delta U_e = q_o \Delta V \\
\Delta K = K_f - K_i \quad K = (1/2)mv^2 \]