Physics 123 Final Exam Review Spring 2001 Instructor: John McGill

The exam will cover Chapters 16, 17, 18, 34, 35, 36 & 37 from the text. You will be allowed two 8.5 x 11 inch sheets of notes to refer to during the exam. (You may write on both sides). You will also need a calculator for the exam. You will have two hours to complete the exam, (2:00 - 4:00 PM, Friday, June 15, 2001, in PS 10).

The following topics may be helpful in guiding you as you study for the exam:

Chapter 16 Oscillations
- Period, T (=1/f)
- Frequency, f (=1/T) [Hz = 1 cycle/second]
- Amplitude, x_m, y_m (maximum displacement)
- Simple Harmonic Oscillator
 - $y = y_m \cos(\omega t + \phi)$
 - $v = -y_m \sin(\omega t + \phi)$
 - $a = -y_m \omega^2$
 - $\omega = 2\pi f = 2\pi / T$ [radians/second]
- Mass on a Spring
 - $\omega^2 = k/m$ $k =$ spring constant
 - $E = (1/2)mv^2 + (1/2)kx^2 = (1/2)mv_m^2 + (1/2)kx_m^2$
- Pendulum
 - $\omega^2 = g/l$
- Damped harmonic oscillator: $y = y_mE^{-bt/2m} \cos(\omega t + \phi)$; $E = E_0e^{-bt/m}$

Chapter 17 Waves
- Wavelength - λ
- Wavenumber - $k = 2\pi/\lambda$ [radians/meter]
- Wavespeed - $v = \lambda / T = \omega k$
- Traveling waves - $y = f(x \pm vt)$; (- to the right, + to the left)
- Traveling Sine Waves - $y = y_m \sin(kx \pm \phi)$; (- to the right, + to the left)
- Standing Waves - nodes, anti-nodes, $y = y_m \sin(kx + \psi) \cos(\omega t + \phi)$
- Waves on strings and springs, wavespeed, $v^2 = F/\mu$; $F=$tension, $\mu =$ mass/unit length
- Resonant modes (of a string, spring, etc... fixed at both ends)
 - Standing waves with a node at each end
 - $\lambda_n = 2L/n$ $n=1,2,3,4...$ $L =$ length of string, spring, etc...
 - $f_n = n\omega / 2L = n\omega_f$
 - distance between consecutive nodes = $\lambda/2$

Chapter 18 Sound
- Sound Waves
- Speed of Sound, (in air, $v = (343m/s)(T_K/293)^{1/2}$
- Drop of intensity with distance: $I = P/4\pi^2$
- Decibel Scale: $\beta = 10\log(I/I_o)$, $I_o = 1.0x10^{-12}$ W/m2
- Doppler Effect for sound: $f' = ((v-v_D)/(v- v_s))f_o$ $v_D>$ Away; $v_s >$ Toward

Chapter 34 Electromagnetic waves
- Plane waves: $E = E_0\sin(kx \pm \omega t - \phi)$; $B = B_0\sin(kx \pm \omega t - \phi)$; $(E \perp B) \perp \text{Direction}$
- Speed of light, $c^2 = 1/\mu_0\epsilon_0$ $c = 3.00 \times 10^8$ m/s
- Intensity, $I = E_0B_0/2\mu_0 = E_m^2/2\mu_o c = cB_m^2/2\mu_o = P/4\pi^2$
- Electromagnetic Spectrum
- The Law of Reflection - incident angle = reflected angle

Chapter 34 Electromagnetic waves (continued)
- Planar mirror images - virtual image, $i = -p$
The Law of Refraction - \(n_1 \sin \theta_1 = n_2 \sin \theta_2 \)

The Critical Angle - \(\theta_c = \sin^{-1}(n_{\text{low}}/n_{\text{high}}) \)

Total Internal Reflection

Polarized and Unpolarized light

Polarizing filters:
- Make unpolarized light polarized, \(I = I_o/2 \)
- Only pass the component of light polarized along the axis
- Acting on polarized light: \(I = I_o \cos^2 \theta \)

Polarization on reflection: Brewster’s angle \(\theta_b = \sin^{-1}(n_r/n_i) \)

Chapter 35 Lenses and Mirrors

Thin lenses: converging (\(f>0 \)), diverging (\(f<0 \)), focal length

Ray Tracing

Images: real, virtual, sign conventions

Thin lens equation: \(1/f = 1/p + 1/i \)

Magnification: \(M = -i/p \)

Spherical Mirrors: \(f = r/2 \), convex (\(f<0 \)), concave (\(f>0 \))

Multiple lenses and mirrors

Chapter 36 Interference

Double slit (double source) interference
- When both sources (slits) are in phase
 - Constructive interference: \(R_2-R_1 = m\lambda \) \(m=0, \pm 1, \pm 2, \pm 3, \pm 4,... \)
 - Destructive interference: \(R_2-R_1 = (m+1/2)\lambda \)

- When \(R_2-R_1 >> d \) (the distance between the slits (sources))
 \(R_2-R_1 = dsin \theta \)
- Intensity: \(I = I_o \cos^2(\pi asin \theta/\lambda) \)

Interference from thin films on reflection
- Low to high to low index
 - Constructive: \(2nt = (m+1/2)\lambda \) \(m=0, \pm 1, \pm 2, \pm 3, \pm 4,... \)
 - Destructive: \(2nt = m\lambda \)

- Low to high to higher index
 - Constructive: \(2nt = m\lambda \)
 - Destructive: \(2nt = (m+1/2)\lambda \) \(m=0, \pm 1, \pm 2, \pm 3, \pm 4,... \)

Chapter 37 Diffraction

Single Slit Diffraction
- Minima: \(asin \theta = m\lambda \) \(a = \) slit width, \(m = \pm 1, \pm 2, \pm 3,... \)
- Intensity: \(I = I_m (\sin(\pi asin \theta/\lambda)/(\pi asin \theta/\lambda))^2 \)

Diffraction grating
- Maxima: \(dsin \theta = m\lambda \) \(d = \) grating spacing, \(m=0, \pm 1, \pm 2, \pm 3,... \)

Circular Aperture Diffraction
- \(1^{\text{st}} \) minimum: \(asin \theta = 1.22\lambda \) \(a = \) diameter
- Resolution, the Rayleigh Criterion